Электрический ракетный двигатель принцип работы и устройство. Что такое активная и реактивная электроэнергия? Расчет реактивной электроэнергии

ЭЛЕКТРИЧЕСКИЙ РАКЕТНЫЙ ДВИГАТЕЛЬ , электроракетный двигатель (ЭРД) - ракетный двигатель , в котором в качестве источника энергии для создания тяги используется электрическая энергия бортовой энергоустановки КА (обычно солнечные или аккумуляторные батареи). По принципу действия ЭРД подразделяются на электротермические ракетные двигатели , электростатические ракетные двигатели и электромагнитные ракетные двигатели . В электротермических РД электрическая энергия применяется для нагрева рабочего тела (РТ) с целью обращения его в газ с температурой 1000-5000 К; газ, истекая из реактивного сопла (аналогичного соплу химического РД), создаёт тягу. В электростатических РД, например, ионном, вначале производится ионизация РТ, после чего положительные ионы ускоряются в электростатическом поле (при помощи системы электродов) и, истекая из сопла, создают тягу (для нейтрализации заряда реактивной струи в неё инжектируются электроны). В электромагнитном РД (плазменном) рабочим телом является плазма любого вещества, ускоряемая за счёт силы Ампера в скрещённых электрических и магнитном полях. На базе указанных основных типов (классов) ЭРД возможно создание различных промежуточных и комбинированных вариантов, в наибольшей степени отвечающих конкретным условиям применения. Кроме того, некоторые ЭРД при изменении режима электропитания могут «переходить» из одного класса в другой.

ЭРД имеет исключительно высокий удельный импульс - до 100 км/с и более. Однако большой потребный расход энергии (1-100 кВт/Н тяги) и малое отношение тяги к площади поперечного сечения реактивной струи (не более 100 кН/м 2) ограничивают максимально целесообразную тягу ЭРД несколькими десятками ньютонов. Для ЭРД характерны размеры ~ 0,1 м и масса порядка нескольких килограммов.

Рабочие тела ЭРД определяются сущностью процессов, протекающих в различных типах этих двигателей, и отличаются большим разнообразием: это низкомолекулярные или легко диссоциирующие газы и жидкости (в электротермических РД); щелочные или тяжёлые, легко испаряющиеся металлы, а также органические жидкости (в электростатических РД); различные газы и твёрдые вещества (в электромагнитных РД). Обычно бак с РТ совмещается конструктивно с ЭРД в едином двигательном блоке (модуле). Разделение источника энергии и РТ способствует весьма точному регулированию тяги ЭРД в широких пределах при сохранении высокого значения удельного импульса. Многие ЭРД способны работать сотни и тысячи часов при многократном включении. Некоторые ЭРД, являющиеся по своему принципу импульсными РД, допускают десятки млн. включений. Экономичность и совершенство рабочего процесса ЭРД характеризуются значениями коэффициента полезного действия и цены тяги , размеры ЭРД - значением плотности тяги .

Характерные значения некоторых параметров ЭРД

Параметры Тип ЭРД
электро-термический электро-магнитный электро-статический
Тяга, Н 0,1 — 1 0,0001 — 1 0,001 — 0,1
Удельный импульс, км/с 1 — 20 20 — 60 30 — 100
Плотность тяги (максимальная), кН/м 2 100 1 0,03 — 0,05
Напряжение питающего тока, В единицы — десятки десятки — сотни десятки тысяч
Сила питающего тока, А сотни — тысячи сотни — тысячи доли единицы
Цена тяги, кВт/Н 1 — 10 100 10 — 40
КПД 0,6 — 0,8 0,3 — 0,5 0,4 — 0,8
Электрическая мощность, Вт десятки — тысячи единицы — тысячи десятки — сотни

Важной характеристикой ЭРД являются параметры электропитания. В связи с тем, что для большинства существующих и перспективных бортовых энергоустановок характерно генерирование постоянного тока сравнительно низкого напряжения (единицы — десятки вольт) и большой силы (до сотен и тысяч ампер), проще всего вопрос электропитания решается в электротермических РД, являющихся преимущественно низковольтными и сильноточными. Эти РД могут питаться также от источника переменного тока. Наибольшие трудности с электропитанием возникают при использовании электростатических РД, для работы которых необходим постоянный ток высокого (до 30-50 кВ) напряжения, хотя и малой силы. В этом случае необходимо предусматривать преобразующие устройства, которые значительно увеличивают массу ДУ. Наличие в ДУ рабочих элементов, связанных с электропитанием ЭРД, и малое значение тяги ЭРД определяют чрезвычайно низкую тяговооружённостъ КА с этими двигателями. Поэтому ЭРД имеет смысл применять только в КА после достижения 1-й космической скорости с помощью химического или ядерного РД (кроме того, некоторые ЭРД вообще могут работать лишь в условиях космического вакуума).

Идея использования электрической энергии для получения реактивной тяги обсуждалась ещё К. Э. Циолковским и другими пионерами космонавтики. В 1916-17 Р. Годдард подтвердил опытами реальность этой идеи. В 1929-33 В. П. Глушко создал экспериментальный электротермический РД. Затем в связи с отсутствием средств доставки ЭРД в космос и проблематичностью создания источников электропитания с приемлемыми параметрами разработки ЭРД были прекращены. Они возобновились в конце 50-х — начале 60-х гг. и были стимулированы успехами космонавтики и физики высокотемпературной плазмы (развитой в связи с проблемой управляемого термоядерного синтеза). К началу 80-х гг. в СССР и США испытано около 50 различных конструкций ЭРД в составе КА и высотных атмосферных зондов. В 1964 испытаны впервые в полёте электромагнитные (СССР) и электростатические (США) РД, в 1965 — электротермические РД (США). ЭРД использовались для управления положением и коррекций орбит КА, для перевода КА на другие орбиты (подробнее см. в ст. о различных типах ЭРД). Значительные успехи в создании ЭРД достигнуты в Великобритании, ФРГ, Франции, Японии, Италии. Проектные исследования показали целесообразность применения ЭРД в реактивных системах управления КА, рассчитанных на длительную работу (несколько лет), а также в качестве маршевых двигателей КА, совершающих сложные околоземные орбитальные переходы и межпланетные перелёты. Использование для указанных целей ЭРД вместо химических РД позволит увеличить относительную массу полезного груза КА, а в некоторых случаях сократить сроки полёта или сэкономить средства.

В связи с малым ускорением, сообщаемым КА электрическими двигателями, маршевые ДУ с ЭРД должны работать непрерывно в течение нескольких месяцев (например, при переходе КА с низкой орбиты на геосинхронную) или несколько лет (при межпланетных полётах). В США исследовалась, например, маршевая ДУ с несколькими ионными ЭРД тягой по 135 мН и удельным импульсом ~ 30 км/с, питаемыми от солнечной энергетической установки. В зависимости от числа ЭРД и запаса РТ (ртуть) ДУ могла бы обеспечить полёт КА к кометам и астероидам, вывод КА на орбиты Меркурия, Венеры, Сатурна, Юпитера, посылку КА, способного доставить на Землю марсианский грунт, посылку исследовательских зондов в атмосферы внешних планет и их спутников, вывод КА на околосолнечные орбиты вне плоскости эклиптики и т. д. В частности, ДУ в варианте с 6 ЭРД и запасом РТ в 530 кг смогла бы обеспечить пролёт около кометы Энке - Баклунда полезного груза массой 410 кг (включая 60 кг научной аппаратуры).

Исследуются также ДУ с ЭРД, питаемыми от ядерных энергетических установок. Использование этих установок, параметры которых не зависят от внешних условий, представляется целесообразным при электрической мощности КА свыше 100 кВт. Указанные ДУ могут обеспечить манёвры транспортных кораблей вблизи Земли, а также полёты между Землёй и Луной, посылку КА для детального исследования внешних планет, полёты межпланетных пилотируемых КК и т. д. Согласно предварительным проработкам, КА с начальной массой 20-30 т, снабжённый реакторной энергоустановкой мощностью в несколько сотен кВт и небольшим числом импульсных электромагнитных ЭРД с тягой по несколько десятков Н, смог бы в течение 8-9 лет исследовать детально систему Юпитера, доставив на Землю образцы грунта его спутников. Достижение высоких расчётных характеристик ДУ для такого КА требует, однако, решения многих проблем.

Разработка ЭРД способствует решению теоретических вопросов и созданию специальных материалов, технология, процессов, элементов и устройств, имеющих большое значение для развития промышленных технологических процессов, электротехники, электроники, лазерной техники, термоядерной физики, газодинамики, а также космических, химических и медицинских исследований.

Электрический ракетный двигатель - ракетный двигатель, принцип действия которого основан на использовании, для создания тяги электрической энергии, получаемой от энергоустановки, находящейся на борту космического аппарата. Основная сфера применения - небольшая коррекция траектории, а также ориентация в пространстве космических аппаратов. Комплекс, состоящий из электрического ракетного двигателя, системы подачи и хранения рабочего тела, системы автоматического управления и системы электропитания, называется электроракетной двигательной установкой.

Упоминание о возможности использования в ракетных двигателях электрической энергии для создания тяги встречается в трудах К. Э. Циолковского. В 1916-1917 гг. были проведены первые эксперименты Р. Годдардом, и уже в 30-х гг. XX в. под руководством В. П. Глушко был создан один из первых электрических ракетных двигателей.

В сравнении с другими ракетными двигателями электрические позволяют увеличить срок существования космического аппарата, и при этом значительно снижается масса двигательной установки, что позволяет увеличить полезную нагрузку, получить наиболее полные массогабаритные характеристики. Используя электрические ракетные двигатели , можно сократить длительность полета к дальним планетам, а также сделать полет к какой-либо планете возможным.

В середине 60-х гг. XX в. активно велись испытания электрических ракетных двигателей на территории СССР и США, а уже в 1970-х гг. они использовались как штатные двигательные установки.

В России классификация идет по механизму ускорения частиц. Можно выделить следующие типы двигателей: электротермические (электронагревные, электродуговые), электростатические (ионные, в том числе коллоидные, стационарные плазменные двигатели с ускорением в анодном слое), сильно-точные (элекромагнитные, магнитодинамические) и импульсные двигатели.

В качестве рабочего тела возможно применение любых жидкостей и газов, а также их смеси. Для каждого типа электродвигателя необходимо применять соответствующие рабочие тела для достижения наилучших результатов. Для электротермических традиционно применяется аммиак, в работе электростатических двигателей используется ксенон, в сильноточных - литий, а для импульсных наиболее эффективным рабочим телом является фторопласт.

Одним из главных источников потерь является энергия, затрачиваемая на ионизацию на единицу ускоренной массы. Преимуществом электрических ракетных двигателей является малый массовый расход рабочего тела, а также высокая скорость истечения ускоренного потока частиц. Верхняя граница скорости истечения теоретически находится в пределах скорости света.

В настоящее время для различных типов двигателей скорость истечения колеблется в пределах от 16 до 60 км/с, хотя перспективные модели смогут дать скорость истечения потока частиц до 200 км/с.
Недостатком является очень малая плотность тяги, также необходимо отметить: внешнее давление не должно превышать давление в ускорительном канале. Электрическая мощность современных электрических ракетных двигателей, применяемых на космических аппаратах, колеблется от 800 до 2000 Вт, хотя теоретическая мощность может достигать мегаватт. КПД электрических ракетных двигателей невысок и варьируется от 30 до 60%.

В ближайшее десятилетие этот тип двигателей в основном будет выполнять задачи по коррекции орбиты космических аппаратов, находящихся как на геостационарных, так и на низких околоземных орбитах, а также для доставки космических аппаратов с опорной околоземной орбиты на более высокие, например геостационарную.

Замена жидкостного ракетного двигателя, выполняющего функцию корректора орбиты, на электрический позволит снизить массу типового спутника на 15%, а если увеличить срок его активного пребывания на орбите, то на 40%.

При этом выделяются два показателя, отражающие затраты полной мощности при обслуживании потребителя. Эти показатели называются активная и реактивная энергия. Полная мощность представляет собой сумму этих двух показателей. О том, что такое активная и реактивная электроэнергия и как проверить сумму начисленных оплат, попытаемся рассказать в этой статье.

Полная мощность

По сложившейся практике потребители оплачивают не полезную мощность, которая непосредственно используется в хозяйстве, а полную, которую отпускает предприятие-поставщик. Различают эти показатели по единицам измерения - полная мощность измеряется в вольт-амперах (ВА), а полезная - в киловаттах. Активная и реактивная электроэнергия используется всеми запитанными от сети электроприборами.

Активная электроэнергия

Активная составляющая полной мощности совершает полезную работу и преобразовывается в те виды энергии, которые нужны потребителю. У части бытовых и промышленных электроприборов в расчетах активная и полная мощность совпадают. Среди таких устройств - электроплиты, лампы накаливания, электропечи, обогреватели, утюги и и прочее.

Если в паспорте указана активная мощность 1 кВт, то полная мощность такого прибора будет составлять 1 кВА.

Понятие реактивной электроэнергии

Этот присущ цепям, в составе которых имеются реактивные элементы. Реактивная электроэнергия - это часть полной поступаемой мощности, которая не расходуется на полезную работу.

В электроцепях постоянного тока понятие реактивной мощности отсутствует. В цепях реактивная составляющая возникает только в том случае, когда присутствует индуктивная или емкостная нагрузка. В таком случае наблюдается несоответствие фазы тока с фазой напряжения. Данный сдвиг фаз между напряжением и током обозначается символом «φ».

При индуктивной нагрузке в цепи наблюдается отставание фазы, при емкостной - ее опережение. Поэтому потребителю приходит только часть полной мощности, а основные потери происходят из-за бесполезного нагревания устройств и приборов в процессе эксплуатации.

Потери мощности происходят из-за наличия в электрических устройствах индуктивных катушек и конденсаторов. Из-за них в цепи в течение некоторого времени происходит накопление электроэнергии. После этого запасенная энергия поступает обратно в цепь. К приборам, в составе которых имеется реактивная составляющая электроэнергии, относятся переносные электроинструменты, электродвигатели и различная бытовая техника. Эта величина рассчитывается с учетом особого коэффициента мощности, который обозначается как cos φ.

Расчет реактивной электроэнергии

Коэффициент мощности лежит в пределах от 0,5 до 0,9; точное значение этого параметра можно узнать из паспорта электроприбора. Полная мощность должна быть определена как частное от деления активной мощности на коэффициент.

Например, если в паспорте электрической дрели указана мощность в 600 Вт и значение 0,6, тогда потребляемая устройством полная мощность будет равна 600/06, то есть 1000 ВА. При отсутствии паспортов для вычисления полной мощности прибора коэффициент можно брать равным 0,7.

Поскольку одной из основных задач действующих систем электроснабжения является доставка полезной мощности конечному потребителю, реактивные потери электроэнергии считаются негативным фактором, и возрастание этого показателя ставит под сомнение эффективность электроцепи в целом. Баланс активной и реактивной мощности в цепи может быть наглядно представлен в виде этого забавного рисунка:

Значение коэффициента при учете потерь

Чем выше значение коэффициента мощности, тем меньше будут потери активной электроэнергии - а значит конечному потребителю потребляемая электрическая энергия обойдется немного дешевле. Для того чтобы повысить значение этого коэффициента, в электротехнике используются различные приемы компенсации нецелевых потерь электроэнергии. Компенсирующие устройства представляют собой генераторы опережающего тока, сглаживающие угол сдвига фаз между током и напряжением. Для этой же цели иногда используются батареи конденсаторов. Они подключаются параллельно к рабочей цепи и используются как синхронные компенсаторы.

Расчет стоимости электроэнергии для частных клиентов

Для индивидуального пользования активная и реактивная электроэнергия в счетах не разделяется - в масштабах потребления доля реактивной энергии невелика. Поэтому частные клиенты при потреблении мощности до 63 А оплачивают один счет, в котором вся потребляемая электроэнергия считается активной. Дополнительные потери в цепи на реактивную электроэнергию отдельно не выделяются и не оплачиваются.

Учет реактивной электроэнергии для предприятий

Другое дело - предприятия и организации. В производственных помещениях и промышленных цехах установлено огромное число электрооборудования, и в общей поступаемой электроэнергии имеется значительная часть энергии реактивной, которая необходима для работы блоков питания и электродвигателей. Активная и реактивная электроэнергия, поставляемая предприятиям и организациям, нуждается в четком разделении и ином способе оплаты за нее. Основанием для регуляции отношений предприятия-поставщика электроэнергии и конечных потребителей в этом случае выступает типовой договор. Согласно правилам, установленным в этом документе, организации, потребляющие электроэнергию свыше 63 А, нуждаются в особом устройстве, предоставляющем показания реактивной энергии для учета и оплаты.
Сетевое предприятие устанавливает счетчик реактивной электроэнергии и начисляет оплату согласно его показаниям.

Коэффициент реактивной энергии

Как говорилось ранее, активная и реактивная электроэнергия в счетах на оплату выделяются отдельными строками. Если соотношение объемов реактивной и потребленной электроэнергии не превышает установленной нормы, то плата за реактивную энергию не начисляется. Коэффициент соотношения бывает прописан по-разному, его среднее значение составляет 0,15. При превышении данного порогового значения предприятию-потребителю рекомендуют установить компенсаторные устройства.

Реактивная энергия в многоквартирных домах

Типичным потребителем электроэнергии является многоквартирный дом с главным предохранителем, потребляющий электроэнергию свыше 63 А. Если в таком доме имеются исключительно жилые помещения, плата за реактивную электроэнергию не взимается. Таким образом, жильцы многоквартирного дома видят в начислениях оплату только за полную электроэнергию, поставленную в дом предприятием-поставщиком. Та же норма касается жилищных кооперативов.

Частные случаи учета реактивной мощности

Бывают случаи, когда в многоэтажном здании имеются и коммерческие организации, и квартиры. Поставка электроэнергии в такие дома регулируется отдельными Актами. Например, разделением могут служить размеры полезной площади. Если в многоквартирном доме коммерческие организации занимают менее половины полезной площади, то оплата за реактивную энергию не начисляется. Если пороговый процент был превышен, то возникают обязательства оплаты за реактивную электроэнергию.

В ряде случаев жилые дома не освобождаются от оплаты за реактивную энергию. Например, если в доме установлены пункты подключения лифтов для квартир, начисление за использование реактивной электроэнергии происходит отдельно, лишь для этого оборудования. Владельцы квартир по-прежнему оплачивают лишь активную электроэнергию.

Понимание сущности активной и реактивной энергии дает возможность грамотно рассчитать экономический эффект от установки различных компенсационных устройств, снижающих потери от реактивной нагрузки. Согласно статистике, такие устройства позволяют поднимать значение cos φ от 0.6 до 0.97. Тем самым автоматические компенсаторные устройства помогают сэкономить до трети предоставляемой потребителю электроэнергии. Значительное уменьшение тепловых потерь увеличивает срок эксплуатации приборов и механизмов на производственных участках и снижает себестоимость готовой продукции.

Изобретение относится к электрореактивным двигателям. Изобретение представляет собой двигатель торцевого типа на твердом рабочем теле, состоящий из анода, катода и шашки рабочего тела, расположенной между ними. Шашка выполнена из материала с высоким значением диэлектрической проницаемости, например из титаната бария, и на одной ее стороне установлены анод и катод, а к другой стороне прикреплен проводник. Шашка может иметь форму диска с катодом и анодом, установленными коаксиально или диаметрально противоположно. Изобретение позволяет создать простой по конструкции импульсный электрический реактивный двигатель с высокими удельными параметрами. 4 з.п. ф-лы, 2 ил.

Изобретение относится к области электрических реактивных двигателей (ЭРД) импульсного действия на твердофазном рабочем теле. Известны импульсные плазменные двигатели с системой подачи газообразного рабочего тела (например ксенон, аргон, водород) и импульсные двигатели эрозионного типа с твердофазным рабочим телом политетрафторэтиленом (ПТФЭ) . Основным недостатком первого типа двигателей является сложная система импульсной строго дозируемой подачи рабочего тела вследствие трудности ее синхронизации с импульсами разрядного напряжения и, как следствие, низкий коэффициент использования рабочего тела. Во втором случае (эрозионный тип, рабочее тело - ПТФЭ) удельные параметры имеют низкие значения, максимальный КПД не превышает 15% из-за преобладающего теплового механизма получения и ускорения плазмы электрического разряда. Более совершенным типом двигателя данного класса является импульсный электрический плазменный реактивный двигатель торцевого типа на твердом рабочем теле (в том числе и ПТФЭ) с преобладающим электронно-детонационным типом пробоя (взрывная инжекция электронов с поверхности рабочего тела в сторону анода) . Такой тип двигателя позволяет получать на рабочем теле ПТФЭ более высокие удельные параметры за счет значительного уменьшения дуговой фазы разряда источника плазмы. Наличие дуговой стадии разряда кроме того ведет к появлению неустойчивости процесса генерации плазмы на поверхности рабочего тела типа плазменных жгутов с образованием на поверхности рабочего тела каналов с повышенной проводимостью и, как следствие, к закорачиванию межэлектродного промежутка по упомянутым каналам. В литературе описаны результаты исследований по незавершенному типу пробоя по поверхности диэлектрика на токах, реализуемых в момент зарядки конденсатора, содержащего диэлектрик с высоким значением диэлектрической проницаемости. На базе данного типа пробоя создан эффективный источник частиц (ионов или электронов) импульсного типа . Однако при оценке возможности использования его в составе импульсного ЭРД на базе ионной компоненты с частотой включения десятки-сотни герц возникают проблемы разрядки (деполяризации) диэлектрика, используемого в качестве рабочего тела, а также проблемы стойкости электрода-сетки, выполняющего роль экстрактора частиц, и проблемы нейтрализации ионов. Целью предлагаемого изобретения является создание простого по конструкции с частотой включений до 100 и более герц импульсного ЭРД для получения малой тяги за однократный разряд генератора, но с высокими удельными параметрами. Желаемый уровень тягового секундного импульса обеспечивается регулировкой частоты включения. Данная цель достигается тем, что в импульсном электрическом реактивном двигателе торцевого типа на твердом рабочем теле, состоящем из анода, катода и шашки рабочего тела, расположенной между ними, предлагается шашку рабочего тела выполнить из диэлектрика с высоким значением диэлектрической проницаемости и установить на одной стороне шашки анод и катод, а на другой стороне шашки установить или нанести проводник. Предпочтительным материалом для шашки рабочего тела является титанат бария, а наиболее конструктивной формой - форма диска. Анод и катод могут быть установлены коаксиально или диаметрально противоположно. Предлагаемое решение поясняется чертежами. На фиг.1 приведен вариант импульсного ЭРД с коаксиально расположенными анодом и катодом; на фиг.2 - вариант с анодом и катодом, установленными диаметрально противоположно. Предлагаемый двигатель состоит из анода, катода и шашки рабочего тела, выполненной из диэлектрика с высоким значением диэлектрической проницаемости, например титаната бария с 1000. Такая шашка может иметь форму диска, на одну из сторон которого нанесен проводник 2 в виде тонкого слоя, например, методом напыления или в виде плотно прижатой к поверхности диэлектрика металлической пластины. На другой стороне шашки находятся анод 3 и катод 4, расположенные либо коаксиально (фиг.1), либо диаметрально противоположно (фиг. 2). В таком устройстве при подаче напряжения на анод и катод межэлектродное перекрытие диэлектрика происходит по поверхности диэлектрика и начинается с обоих электродов как результат зарядки двух последовательно соединенных конденсаторов, образованных системами "анод - диэлектрик - проводник" и "проводник - диэлектрик - катод". В результате имеем над поверхностью диэлектрика два плазменных факела (анодный и катодный), движущихся навстречу друг другу, при этом проводник 2 (токопроводящая пластина) устройства будет иметь плавающий потенциал, обусловленный характером протекания токов смещения через диэлектрик. В момент слияния анодного и катодного факелов происходит нейтрализация избыточного положительного заряда ионов, механизм образования которых обусловлен электронно-детонационным типом пробоя для анодного факела. Плазма, полученная после слияния двух факелов, приобретает дополнительное ускорение в режиме разрядки (деполяризации) и выделения запасенной в таком конденсаторе энергии по типу линейного ускорителя. Для реализации эффекта дополнительного ускорения высоту электродов (анода и катода) вдоль потока плазмы формируют, исходя из реального времени, требуемого на разрядку емкости конструкции ЭРД. Такая конструкция устройства и режим его работы позволяют создать импульсный ЭРД с высокими значениями параметров и большой частотой включений (макетный образец указанного типа ЭРД на базе доработанных стандартных высоковольтных (менее 10 кВ) конденсаторов типа КВИ-3 работает в НИИМАШе с частотой включений до 50 Гц). Для работы такого ЭРД необходим генератор высоковольтных импульсов наносекундной длительности. Длительность импульсов, подаваемых на электроды, определяется временем зарядки емкости конструкции ЭРД. Для устранения неустойчивостей типа плазменных жгутов длительность высоковольтного импульса с генератора не должна превышать длительности зарядки емкости конструкции ЭРД. Максимальная частота включений ЭРД определяется временем, требуемым на полный цикл по зарядке и разрядке емкости конструкции ЭРД. Размеры катодного и анодного плазменных факелов, движущихся навстречу друг другу, определяются скоростью перекрытия диэлектрика, зависящей от амплитуды напряжения, величины емкости конструкции, а также от времени задержки начала процесса генерации плазменных факелов. Это время задержки в свою очередь зависит от геометрических параметров зоны анод-диэлектрик, катод-диэлектрик, типа диэлектрика, площади проводника. Работает такой ЭРД следующим образом. При подаче на анод 3 и катод 4 высоковольтного импульса напряжения длительностью, соответствующей времени зарядки емкости конструкции ЭРД, генерируются два движущихся навстречу плазменных факела (анодный от анода и катодный - от катода). Анодный факел имеет избыточный положительный заряд ионов рабочего тела (применительно к такому диэлектрику как керамика титаната бария, это в основном ионы бария как наиболее легко ионизуемого элемента). Плазма катодного факела обусловлена генерацией электронов из катода и бомбардировкой ими поверхности диэлектрика. В момент встречи катодный факел нейтрализует анодный и происходит ускорение плазменного сгустка по типу линейного ускорителя в фазе разрядки емкости конструкции ЭРД через плазму. Следует отметить, что возникающие при сближении пламенных факелов зоны межфакельных пробоев строго не локализованы, то есть не "привязаны" к определенным местам на поверхности диэлектрика в процессе наработки большого числа импульсов. Указанный режим работы такого ЭРД будет способствовать получению высоких значений КПД и скоростей истечения плазмы. Существенной особенностью предлагаемого ЭРД является частотно-импульсный режим работы (с частотой до 100 Гц и более) с возможностью практически мгновенного набора и сброса тяги. Благодаря этой особенности и с учетом реально имеющейся на борту космического аппарата (КА) электрической мощности область эффективного применения двигательной установки (ДУ) на базе предлагаемого импульсного ЭРД может быть расширена, а именно:

Поддержание геостационарных КА в направлении север - юг, восток - запад;

Компенсация аэродинамического сопротивления КА;

Смена орбит и увод отработавших или отказавших КА в заданную область. Источники информации

1. Гришин С.Д., Лесков Л.В., Козлов Н.П. Электрические ракетные двигатели. - М.: Машиностроение, 1975, с. 198-223. 2. Фаворский О. Н. , Фишгойт В.В., Янтовский Е.И. Основы теории космических электрореактивных двигательных установок. - М.: Машиностроение, Высшая школа, 1978, с. 170-173. 3. Л. Кейвни (перевод с английского под ред. А.С. Коротеева). Космические двигатели - состояние и перспективы. - М., 1988, с. 186-193. 4. Патент на изобретение 2146776 от 14 мая 1998. Импульсный плазменный реактивный двигатель торцевого типа на твердом рабочем теле. 5. Вершинин Ю.Н. Электронно-тепловые и детонационные процессы при электрическом пробое твердых диэлектриков. УрО РАН, Екатеринбург, 2000. 6. Бугаев С.П., Месяц Г.А. Эмиссия электронов из плазмы незавершенного разряда по диэлектрику в вакууме. ДАН СССР, 1971, т. 196, 2. 7. Месяц Г.А. Эктоны. Часть 1-УрО РАН, 1993, с. 68-73, часть 3, с. 53-56. 8. Бугаев С.П., Ковальчук Б.М., Месяц Г.А. Плазменный импульсный источник заряженных частиц. Авторское свидетельство 248091.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Импульсный электрический реактивный двигатель торцевого типа на твердом рабочем теле, состоящий из анода, катода и шашки рабочего тела, выполненной из диэлектрика с высоким значением диэлектрической проницаемости и расположенной между ними, отличающийся тем, что катод и анод расположены на одной стороне шашки и удалены друг от друга, а на другую сторону нанесен проводник. 2. Импульсный электрический реактивный двигатель по п. 1, отличающийся тем, что шашка рабочего тела выполнена из титаната бария. 3. Импульсный электрический реактивный двигатель по п. 1, отличающийся тем, что шашка рабочего тела имеет форму диска. 4. Импульсный электрический реактивный двигатель по п. 3, отличающийся тем, что катод и анод установлены коаксиально. 5. Импульсный электрический реактивный двигатель по п. 3, отличающийся тем, что катод и анод установлены диаметрально противоположно.

Комплекс, состоящий из набора ЭРД, системы хранения и подачи рабочего тела (СХиП), системы автоматического управления (САУ), системы электропитания (СЭП), называется электроракетной двигательной установкой (ЭРДУ) .

Введение

Идея использовать для ускорения электрическую энергию в реактивных двигателях возникла практически в начале развития ракетной техники. Известно, что такую идею высказывал К. Э. Циолковский . В -1917 годах Р. Годдард провёл первые эксперименты, а в 30-х годах XX столетия в СССР под руководством В. П. Глушко был создан один из первых действующих ЭРД.

С самого начала предполагалось, что разнесение источника энергии и ускоряемого вещества позволит обеспечить высокую скорость истечения рабочего тела (РТ) , а также и меньшую массу космического аппарата (КА) за счёт снижения массы хранимого рабочего тела . Действительно, в сравнении с другими ракетными двигателями ЭРД позволяют значительно увеличить срок активного существования (САС) КА, существенно при этом снизив массу двигательной установки (ДУ), что, соответственно, позволяет увеличить полезную нагрузку, либо улучшить массо-габаритные характеристики самого КА.

Расчёты показывают, что использование ЭРД позволит сократить длительность полёта к дальним планетам (в некоторых случаях даже сделать такие полёты возможными) или, при той же длительности полёта, увеличить полезную нагрузку.

  • сильноточные (электромагнитные, магнитодинамические) двигатели;
  • импульсные двигатели.

ЭТД, в свою очередь, делятся на электронагревные (ЭНД) и электродуговые (ЭДД) двигатели.

Электростатические делятся на ионные (в том числе коллоидные) двигатели (ИД, КД) - ускорители частиц в униполярном пучке, и ускорители частиц в квазинейтральной плазме. К последним относятся ускорители с замкнутым дрейфом электронов и протяжённой (УЗДП) или укороченной (УЗДУ) зоной ускорения. Первые принято называть стационарными плазменными двигателями (СПД) , также встречается (всё реже) наименование - линейный холловский двигатель (ЛХД), в западной литературе именуется холловским двигателем. УЗДУ обычно называются двигателями с ускорением в анодном слое (ДАС).

К сильноточным (магнитоплазменным, магнитодинамическим) относят двигатели с собственным магнитным полем и двигатели с внешним магнитным полем (например, торцевой холловский двигатель - ТХД).

Импульсные двигатели используют кинетическую энергию газов, появляющихся при испарении твёрдого тела в электрическом разряде.

В качестве рабочего тела в ЭРД могут применяться любые жидкости и газы , а также их смеси. Тем не менее, для каждого типа двигателей существуют рабочие тела, применение которых позволяет достигнуть наилучших результатов. Для ЭТД традиционно используется аммиак , для электростатических - ксенон , для сильноточных - литий , для импульсных - фторопласт .

Недостатком ксенона является его стоимость, обусловленная небольшим годовым производством (менее 10 тонн в год во всём мире), что вынуждает исследователей искать другие РТ, похожие по характеристикам, но менее дорогие. В качестве основного кандидата на замену рассматривается аргон . Он также является инертным газом, но, в отличие от ксенона имеет большую энергию ионизации при меньшей атомной массе. Энергия , затраченная на ионизацию на единицу ускоренной массы, является одним из источников потерь КПД .

Краткие технические характеристики

ЭРД характеризуются малым массовым расходом РТ и высокой скоростью истечения ускоренного потока частиц. Нижняя граница скорости истечения примерно совпадает с верхней границей скорости истечения струи химического двигателя и составляет около 3 000 м/с. Верхняя граница теоретически неограничена (в пределах скорости света), однако для перспективных моделей двигателей рассматривается скорость, не превышающая 200 000 м/с. В настоящее время для двигателей различных типов оптимальной считается скорость истечения от 16 000 до 60 000 м/с.

В связи с тем, что процесс ускорения в ЭРД проходит при низком давлении в ускорительном канале (концентрация частиц не превышает 10 20 частиц/м³), плотность тяги довольно мала, что ограничивает применение ЭРД: внешнее давление не должно превышать давление в ускорительном канале, а ускорение КА очень мало (десятые или даже сотые g ). Исключением из этого правила могут быть ЭДД на малых КА.

Электрическая мощность ЭРД колеблется от сотен ватт до мегаватт. Применяемые в настоящее время на КА ЭРД имеют мощность от 800 до 2 000 Вт.

Перспективы

Хотя электроракетные двигатели имеют малую тягу по сравнению с жидкотопливными ракетами , они способны работать длительное время и осуществлять медленные полеты на большие расстояния