Электромагнитный ракетный двигатель с собственным магнитным полем. Электрический ракетный двигатель

Комплекс, состоящий из набора ЭРД, системы хранения и подачи рабочего тела (СХиП), системы автоматического управления (САУ), системы электропитания (СЭП), называется электроракетной двигательной установкой (ЭРДУ) .

Введение

Идея использовать для ускорения электрическую энергию в реактивных двигателях возникла практически в начале развития ракетной техники. Известно, что такую идею высказывал К. Э. Циолковский . В -1917 годах Р. Годдард провёл первые эксперименты, а в 30-х годах XX столетия в СССР под руководством В. П. Глушко был создан один из первых действующих ЭРД.

С самого начала предполагалось, что разнесение источника энергии и ускоряемого вещества позволит обеспечить высокую скорость истечения рабочего тела (РТ) , а также и меньшую массу космического аппарата (КА) за счёт снижения массы хранимого рабочего тела . Действительно, в сравнении с другими ракетными двигателями ЭРД позволяют значительно увеличить срок активного существования (САС) КА, существенно при этом снизив массу двигательной установки (ДУ), что, соответственно, позволяет увеличить полезную нагрузку, либо улучшить массо-габаритные характеристики самого КА.

Расчёты показывают, что использование ЭРД позволит сократить длительность полёта к дальним планетам (в некоторых случаях даже сделать такие полёты возможными) или, при той же длительности полёта, увеличить полезную нагрузку.

  • сильноточные (электромагнитные, магнитодинамические) двигатели;
  • импульсные двигатели.

ЭТД, в свою очередь, делятся на электронагревные (ЭНД) и электродуговые (ЭДД) двигатели.

Электростатические делятся на ионные (в том числе коллоидные) двигатели (ИД, КД) - ускорители частиц в униполярном пучке, и ускорители частиц в квазинейтральной плазме. К последним относятся ускорители с замкнутым дрейфом электронов и протяжённой (УЗДП) или укороченной (УЗДУ) зоной ускорения. Первые принято называть стационарными плазменными двигателями (СПД) , также встречается (всё реже) наименование - линейный холловский двигатель (ЛХД), в западной литературе именуется холловским двигателем. УЗДУ обычно называются двигателями с ускорением в анодном слое (ДАС).

К сильноточным (магнитоплазменным, магнитодинамическим) относят двигатели с собственным магнитным полем и двигатели с внешним магнитным полем (например, торцевой холловский двигатель - ТХД).

Импульсные двигатели используют кинетическую энергию газов, появляющихся при испарении твёрдого тела в электрическом разряде.

В качестве рабочего тела в ЭРД могут применяться любые жидкости и газы , а также их смеси. Тем не менее, для каждого типа двигателей существуют рабочие тела, применение которых позволяет достигнуть наилучших результатов. Для ЭТД традиционно используется аммиак , для электростатических - ксенон , для сильноточных - литий , для импульсных - фторопласт .

Недостатком ксенона является его стоимость, обусловленная небольшим годовым производством (менее 10 тонн в год во всём мире), что вынуждает исследователей искать другие РТ, похожие по характеристикам, но менее дорогие. В качестве основного кандидата на замену рассматривается аргон . Он также является инертным газом, но, в отличие от ксенона имеет большую энергию ионизации при меньшей атомной массе. Энергия , затраченная на ионизацию на единицу ускоренной массы, является одним из источников потерь КПД .

Краткие технические характеристики

ЭРД характеризуются малым массовым расходом РТ и высокой скоростью истечения ускоренного потока частиц. Нижняя граница скорости истечения примерно совпадает с верхней границей скорости истечения струи химического двигателя и составляет около 3 000 м/с. Верхняя граница теоретически неограничена (в пределах скорости света), однако для перспективных моделей двигателей рассматривается скорость, не превышающая 200 000 м/с. В настоящее время для двигателей различных типов оптимальной считается скорость истечения от 16 000 до 60 000 м/с.

В связи с тем, что процесс ускорения в ЭРД проходит при низком давлении в ускорительном канале (концентрация частиц не превышает 10 20 частиц/м³), плотность тяги довольно мала, что ограничивает применение ЭРД: внешнее давление не должно превышать давление в ускорительном канале, а ускорение КА очень мало (десятые или даже сотые g ). Исключением из этого правила могут быть ЭДД на малых КА.

Электрическая мощность ЭРД колеблется от сотен ватт до мегаватт. Применяемые в настоящее время на КА ЭРД имеют мощность от 800 до 2 000 Вт.

Перспективы

Хотя электроракетные двигатели имеют малую тягу по сравнению с жидкотопливными ракетами , они способны работать длительное время и осуществлять медленные полеты на большие расстояния

ЭЛЕКТРОРАКЕТНЫЕ ДВИГАТЕЛИ (электрореактивные двигатели, ЭРД)-космич. реактивные двигатели, в к-рых направленное движение реактивной струи создаётся за счёт электрич. энергии. Электроракетная двигательная установка (ЭРДУ) включает собственно ЭРД, систему подачи и хранения рабочего вещества и систему, преобразующую электрич. параметры источника электроэнергии к номинальным для ЭРД значениям и управляющую функционированием ЭРД. ЭРД - двигатели малой тяги, действующие в течение длит. времени (годы) на борту космич. летательного аппарата (КЛА) в условиях невесомости либо очень малых гравитац. полей. С помощью ЭРД параметры траектории полёта КЛА и его ориентация в пространстве могут поддерживаться с высокой степенью точности либо изменяться в заданном диапазоне. При эл--магн. либо эл--статич. ускорении скорость истечения реактивной струи в ЭРД значительно выше, чем в жидкостных или твердо-топливных ракетных двигателях; это даёт выигрыш в полезной нагрузке КЛА. Однако ЭРД требуют наличия источника электроэнергии, в то время как в обычных ракетных двигателях носителем энергии являются компоненты топлива (горючее и окислитель). В семейство ЭРД входят плазменные двигатели (ПД), эл--хим. двигатели (ЭХД) и ионные двигатели (ИД).

Электрохимические двигатели . В ЭХД электроэнергия используется для нагрева и хим. разложения рабочего вещества. ЭХД подразделяются на электронагревные (ЭНД), термокаталитические (ТКД) и гибридные (ГД) двигатели. В ЭНД рабочее вещество (водород, аммиак) нагревается электронагревателем и затем истекает со сверхзвуковой скоростью через сопло (рис. 1). В ТКД электроэнергией нагревается катализатор (до темп-ры ~500 o C), химически разлагающий рабочее вещество (аммиак, гидразин); далее продукты разложения истекают через сопло. В ГД происходит сначала разложение рабочего вещества, потом подогрев продуктов разложения и их истечение. Конструкция ЭХД и используемые конструкц. материалы рассчитаны на включение на борту КЛА в течение 7-10 лет при числе запусков до 10 5 , длительности непрерывной работы ~ 10-100 ч и отклонении тяговых характеристик от номинала не более 5-10%. Уровень потребляемой ЭХД электрич. мощности - десятки Вт, диапазон тяг - 0,01 -10 H. ЭХД имеют очень низкую для ЭРД энергетич. цену тяги ~3 кВт/Н, большую скорость истечения струи (3 км/с) за счёт малого молекулярного веса рабочего вещества и продуктов его разложения. Гидразиновый ГД с тягой 0,44 H успешно работал на спутнике связи "Интел-сат-5"; аммиачный ЭНД с тягой 0,15 H входит в состав штатной ЭРДУ спутников серии "Метеор", к-рая корректирует орбиту и ориентацию спутника.

Рис. 1. Схема электронагревного двигателя: 1 -пористый электронагреватель; 2-тепловой экран; 3 - кожух; 4 - сопло .

Ионные двигатели . В ИД положит. ионы рабочего вещества ускоряются в эл--статич. поле. ИД (рис. 2) состоит из эмиттера ионов 4, ускоряющего электрода 5 с отверстиями (щелями), сквозь к-рые проходят ускоренные ионы, и внеш. электрода 6 (экрана), в роли к-рого обычно используют корпус ИД. Ускоряющий электрод находится под отрицат. потенциалом (~10 3 -10 4 B) относительно эмиттера. Электрич. ток и пространств. электрич. реактивной струи должны быть нулевыми, поэтому выходящий ионный пучок нейтрализуется электронами, к-рые эмитирует нейтрализатор 7. Внеш. электрод находится под потенциалом, отрицательным относительно эмиттера и положительным относительно ускоряющего электрода; положит. смещение потенциала выбирается таким, чтобы сравнительно малоэнергичные электроны из нейтрализатора запирались электрич. полем и не попадали в ускоряющий промежуток между эмиттером и ускоряющим электродом. Энергия ускоренных ионов определяется разностью потенциалов между эмиттером и внеш. электродом. Наличие положит. пространств. заряда в ускоряющем промежутке ограничивает ионный ток из эмиттера. Осн. параметры ИД: скорость истечения, тяговый кпд, энергетич. цена тяги (Вт/Н), энергетич. цена иона (эВ/ион) - кол-во энергии, затрачиваемое на образование иона. Степень рабочего вещества в ИД должна быть как можно выше(>0,90,95).

Рис. 2. Схема ионного двигателя с объёмной ионизацией конструкции Г. Кауфмана: 1 - катод газоразрядной каме ры; 2- анод; 3 -магнитная катушка; 4-эмитирующий электрод; 5 - ускоряющий электрод; 6 - внешний электрод; 7 - нейтрализатор .

В зависимости от типа эмиттера ИД подразделяются на двигатели с поверхностной ионизацией (ИДПИ), коллоидные двигатели (КД) и двигатели с объёмной ионизацией (ИДОИ). В ИДПИ ионизация происходит при пропускании паров рабочего вещества сквозь пористый эмиттер; рабочего вещества должна быть меньше работы выхода материала эмиттера. Обычно выбирается пара цезий (рабочее вещество) - вольфрам (эмиттер). Эмиттер подогревается до темп-ры 1500 o K во избежание конденсации рабочего вещества. В КД (существуют только лаб. прототипы) рабочее вещество (20%-ный раствор йодистого калия в глицерине) распыляется через капилляры в виде положительно заряженных микрокапель в ускоряющий промежуток; электрич. заряд микрокапель возникает в процессе экстракции струек из капилляров в сильном электрич. поле и последующем их распаде на капли. Источником ионов в ИДОИ является газоразрядная камера (ГРК), в к-рой атомы рабочего вещества (паров металлов, инертных газов) ионизуются электронным ударом в газовом разряде низкого давления [разряд между электродами 1 и 2 (рис. 2) либо безэлектродный СВЧ-разряд]; ионы из ГРК вытягиваются в ускоряющий промежуток сквозь отверстия эмитирующего электрода-стенки ГРК, образующего вместе с ускоряющим электродом ионно-оптич. систему (ИОС) для ускорения и фокусировки ионов. Стенки ГРК, кроме эмитирующего электрода, магнитоизолированы от плазмы. ИДОИ - наиб. разработанные с инженерн. и физ. точек зрения ИД, их тяговый кпд ~70%, подтверждённый в наземных испытаниях ресурс работы доведён до 2 · 10 4 ч. Ресурс работы ИД ограничивается эрозией ускоряющего электрода вследствие его катодного распыления вторичными ионами, возникающими в результате перезарядки быстрых ускоренных ионов на медленных нейтральных атомах рабочего вещества. Энергетич. цены тяги и иона в ИД (за исключением КД) весьма значительны (2·10 4 Вт/H, 250 эВ/ион). По этой причине ИД пока не используются в космосе в качестве рабочих ЭРД (ЭХД, ПД), хотя они неоднократно испытывались на борту КЛА. Наиб. значительно испытание по программе SERT-2 (1970, США); в состав ЭРДУ входили две ИДОИ конструкции Г. Кауфмана (рабочее тело - ртуть, потребляемая мощность 860 Вт, кпд 68%, тяга 0,03 H), проработавшие без отказа непрерывно 3800 ч и 2011 ч соответственно и возобновившие функционирование после длит. перерыва.

ПД по схеме плазменных ускорителей с замкнутым дрейфом электронов и протяжённой зоной ускорения систематически используется на КЛА, в особенности на геостационарных спутниках связи.

Лит.: Гильзин К. А., Электрические межпланетные корабли, 2 изд., M., 1970; Морозов А. И., Шубин А. П., Космические электрореактивные двигатели, M., 1975; Гришин С. Д., Лесков Л. В., Козлов H. П., Электрические ракетные двигатели, M., 1975.

Электрический ракетный двигатель (ЭРД)

Ограниченное применение ЭРД связано с необходимостью большого расхода электроэнергии (10-100 квт на 1 н тяги). Из-за наличия бортовой энергоустановки (и др. вспомогательных систем), а также из-за малой плотности тяги аппарат с ЭРД имеет малое ускорение. Поэтому ЭРД могут быть использованы только в космических летательных аппаратах (КЛА), совершающих полёт либо в условиях слабых гравитационных полей, либо на околопланетных орбитах. Они применяются для ориентации, коррекции орбит КЛА и др. операций, не требующих больших затрат энергии. Электростатические, плазменные холловские и др. ЭРД рассматриваются как перспективные в качестве основных двигателей КЛА. Из-за малой отбрасываемой массы РТ время непрерывной работы таких ЭРД будет измеряться месяцами и годами; их использование вместо существующих химических РД позволит увеличить массу полезного груза КЛА.

Идея использования электрической энергии для получения тяги выдвигалась ещё К. Э. Циолковским и другими пионерами космонавтики. В 1916-17 Р. Годдард (США) подтвердил опытами реальность этой идеи. В 1929-33 В. П. Глушко (СССР) создал экспериментальный ЭРД. В 1964 в СССР на КЛА типа «Зонд» испытаны плазменные импульсные РД, в 1966-71 на КЛА «Янтарь» - ионные РД, в 1972 на КЛА «Метеор» - плазменные квазистационарные РД. Различные типы ЭРД испытаны начиная с 1964 в США: в баллистическом, а затем в космическом полёте (на аппаратах АТС, СЕРТ-2 и др.). Работы в этой области ведутся также в Великобритании, Франции, ФРГ, Японии.

Лит.: Корлисс У. Р., Ракетные двигатели для космических полетов, пер. с англ., М., 1962; Штулингер Э., Ионные двигатели для космических полетов, пер. с англ.. М., 1966; Гильзин К. А., Электрические межпланетные корабли, 2 изд., М., 1970; Гуров А. Ф., Севрук Д. Д., Сурнов Д. Н., Конструкция и расчет на прочность космических электроракетных двигателей, М., 1970; Фаворский О. Н., Фишгойт В, В., Янтовский Е. И., Основы теории космических электрореактивных двигательных установок, М., 1970; Гришин С. Д., Лесков Л. В., Козлов Н. П., Электрические ракетные двигатели, М., 1975.

Ю. М. Трушин.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Электрический ракетный двигатель" в других словарях:

    Ракетный двигатель, в котором в качестве источника энергии для создания тяги используется электрическая энергия бортовой энергоустановки космического летательного аппарата. Применяется для коррекции траектории и ориентации космических аппаратов.… … Большой Энциклопедический словарь

    - (ЭРД) ракетный двигатель, принцип работы которого основан на преобразовании электрической энергии в направленную кинетическую энергию частиц. Также встречаются названия, включающие слова реактивный и движитель. Комплекс, состоящий из… … Википедия

    Ракетный двигатель, в котором для создания тяги используется электрическая энергия бортовой энергоустановки космического летательного аппарата. Применяется для коррекции траектории и ориентации космических аппаратов. Электрические ракетные… … Энциклопедический словарь

    электрический ракетный двигатель - elektrinis raketinis variklis statusas T sritis Gynyba apibrėžtis Raketinis variklis, kuriame reaktyvinė trauka sudaroma naudojant raketos energijos šaltinio elektros energiją. Pagal veikimo principą skiriamas elektroterminis, elektrostatinis ir… … Artilerijos terminų žodynas

    - (ЭРД) ракетный двигатель, в к ром рабочее тело разгоняется до весьма высоких скоростей (недостижимых в химических ракетных двигателях) с помощью электрич. энергии. Для ЭРД характерны высокий уд. импульс и большая относит. масса электросиловой… … Большой энциклопедический политехнический словарь

    Электромагнитный ракетный двигатель, плазменный ракетный двигатель, ЭРД электрический ракетный двигатель, создающий тягу за счёт разгона в электромагнитном поле рабочего тела, превращённого в плазму. Принципы работы ЭРД состоит из двух основных… … Википедия

    Российские электростатические (стационарные плазменные) двигатели Электрический ракетный двигатель электростатический электрический ракетный двигатель, ускорение частиц рабочего тела в котором осуществляется в электростатическом поле. Эл … Википедия

    ЭРД, работающий в режиме кратковременных импульсов длительностью от нескольких микросекунд до нескольких милисекунд. Варьируя частоту включений РД и длительность импульсов, можно получать любые потребные значения суммарного импульса тяги. ДУ с… … Википедия

    Данный тип электрического ракетного двигателя характеризуется тем, что вначале электрическая энергия используется для нагрева рабочего тела (газа). Затем термическая энергия струи преобразуется в кинетическую энергию струи в сопле. Обычно это… … Википедия

    - (РД) Реактивный двигатель, использующий для своей работы только вещества и источники энергии, имеющиеся в запасе на перемещающемся аппарате (летательном, наземном, подводном). Т. о., в отличие от воздушно реактивных двигателей (См.… … Большая советская энциклопедия

Единственное с чем согласен с автором, так это то что так это что вокруг понятия "реактивная энергия" немало легенд... В отместку видимо автор выдвинул ещё и свою...Путано...противоречиво...изобилие всяких: ""энергия приходит, энергия уходит..." Итог вообще получился шокирующий, истина перевёрнута с ног на ноги: "Вывод - реактивный ток вызывает нагрев проводов, не совершая при этом никакой полезной работы" Господин, дорогой! нагрев это уже работа!!! Мнение моё, тут людям с техническим образованием без векторной диаграммы синхронного генератора под нагрузкой не склеить описание процесса грамотно, а людям интересующимся могу предложить простой вариант, без затей.

Итак о реактивной энергии. 99% электричества напряжением 220 вольт и более вырабатывается синхронными генераторами. Электроприборами в быту и работе мы используем разные, большинство из них "греют воздух", выделяют теплоту в той или иной степени...Пощупайте телевизор, монитор компьютера, о кухонной электропечи я уже не говорю, везде чувствуется тепло. Это всё потребители активной мощности в электросети синхронного генератора. Активная мощность генератора это безвозвратные потери вырабатываемой энергии на тепло в проводах и приборах. Для синхронного генератора передача активной энергии сопровождается механическим сопротивлением на приводном валу. Если бы Вы, уважаемый читатель вращали генератор вручную, Вы бы сразу же почувствовали повышенное сопротивление Вашим усилиям и означало бы это одно, кто-то в вашу сеть включил дополнительное число нагревателей, т.е повысилась активная нагрузка. Если в качестве привода генератора у вас дизель, будьте уверены, расход топлива возрастает молниеносно, т.к именно активная нагрузка потребляет ваше топливо. С реактивной энергией иначе...Скажу я вам, невероятно, но некоторые потребители электроэнергии сами являются источниками электроэнергии, пусть на очень короткое мгновение, но являются. А если учесть что переменный ток промышленной частоты изменяет своё направление 50 раз в секунду, то такие (реактивные) потребители 50 раз в секунду передают свою энергию сети. Знаете как в жизни, если кто-то что-то добавляет к оригиналу своё без последствий это не остаётся. Так и здесь, при условии, что реактивных потребителей много, или они достаточно мощные, то синхронный генератор развозбуждается. Возвращаясь к нашей прежней аналогии где в качестве привода Вы использовали свою мышечную силу, можно будет заметить, что несмотря на то что Вы не изменили ни ритма вращая генератор, ни не почувствовали прилива сопротивления на валу, лампочки в вашей сети вдруг погасли. Парадокс, тратим топливо, вращаем генератор с номинальной частотой, а напряжения в сети нет... Уважаемый читатель, выключи в такой сети реактивные потребители и всё восстановится. Не вдаваясь в теорию развозбуждение происходит когда магнитные поля внутри генератора, поле системы возбуждения вращающейся вместе с валом и поле неподвижной обмотки соединённой с сетью поворачиваются встречно друг другу, тем самым ослабляю друг друга. Генерация электроэнергии при понижении магнитного поля внутри генератора уменьшается. Техника ушла далеко в перёд, и современные генераторы оснащены автоматическими регуляторами возбуждения, и когда реактивные потребители "провалят" напряжение в сети, регулятор сразу же повысит ток возбуждения генератора, магнитный поток восстановится до нормы и напряжение в сети восстановится Понятно, что ток возбуждения имеет и активную составляющую, так что извольте добавить и топливо в дизеле.. В любом случае, реактивная нагрузка негативно влияет на работу электросети, особенно в момент подключения реактивного потребителя к сети, например, асинхронного электродвигателя...При значительной мощности последнего всё может закончится плачевно, аварией. В заключение, могу добавить для пытливого и продвинутого оппонента, что, есть и реактивные потребители с полезными свойствами. Это всё те что обладают электроёмкостью...Включи такие устройства в сеть и уже электрокомпания должна вам)). В чистом виде это конденсаторы. Они тоже отдают электроэнергию 50 раз в секунду, но при этом магнитный поток генератора наоборот увеличивается, так что регулятор может даже понизить ток возбуждения, экономя затраты. Почему мы раньше об этом не оговорились...а зачем...Дорогой читатель обойди свой дом и поищи емкостной реактивный потребитель...не найдешь...Разве только раскурочишь телевизор или стиральную машину...но пользы от этого понятно не будет....<

Этот обширный класс двигателей объединяет различные типы двигателей, которые очень интенсивно разрабатываются в настоящее время. Разгон рабочего тела до определенной скорости истечения производится за счет электрической энергии. Энергия получается от атомной или солнечной электростанции, находящейся на борту космического корабля (в принципе даже от химической батареи). Мыслимы многочисленные типы бортовых энергетических установок .

Схемы разрабатываемых электрических двигателей чрезвычайно разнообразны. Мы рассмотрим три основные группы электрических двигателей , различающиеся по способу, с помощью которого происходит выброс рабочего тела из ракеты. (Возможны, однако, и иные способы классификации электрических двигателей

Электротермические двигатели. Эти двигатели, как и все рассматривавшиеся нами до сих пор, относятся к тепловым. Нагретое до высокой температуры рабочее тело (водород) превращается в плазму - электрически нейтральную смесь

положительных ионов и электронов. Методы электрического нагрева могут быть различны: нагрев в электрической дуге (рис. 10), с помощью вольфрамовых нагревательных элементов, посредством электрического разряда и другие

Рис. 10. Схема электродугового двигателя

При лабораторных испытаниях электродуговых двигателей достигнута скорость истечения порядка Если удастся осуществить магнитную изоляцию плазмы от стенок тяговой камеры, температура плазмы сможет быть очень высока и скорость истечения доведена до Реактивные ускорения в электротермических двигателях будут порядка .

Первый в мире электротермический двигатель был разработан в 1929-1933 гг. в Советском Союзе под] руководством В. П. Глушко в знаменитой Газодинамической лаборатории .

Электростатические (ионные) двигатели . В этих двигателях мы впервые сталкиваемся с разгоном рабочего тела «холодным» путем. Частицы рабочего тела (пары легко ионизуемых металлов, например рубидия или цезия) теряют свои электроны в ионизаторе и разгоняются до большой скорости в электрическом поле. Чтобы электрический заряд струи заряженных частиц позади аппарата не препятствовал дальнейшему истечению, эта струя нейтрализуется вне его выбрасыванием отнятых у атомов электронов (рис. 11).

Рис. 11. Принципиальная схема ноьного двигателя

В ионном двигателе не существует температурных ограничений. Поэтому в принципе возможно достижение сколь угодно больших скоростей истечения, вплоть до приближающихся к скорости света . Однако слишком высокие скорости истечения приходится исключить из рассмотрения, так как они потребовали бы огромной мощности электростанции на борту корабля.

Рис. 12. Схема образования движущихся плазмоидов в «импульсном» плазменном двигателе 11.18].

При этом масса двигательной установки возросла бы гораздо сильнее, чем тяга, и в результате сильно бы снизилось реактивное ускорение. Цель космического полета, его продолжительность, качество энергетической установки определяют наилучшую, оптимальную для уданной задачи скорость истечения. Она находится, по мнению одних авторов, в пределах , по мнению других, , . Ионные двигатели будут способны сообщить реактивное ускорение порядка .

Большие надежды возлагаются некоторыми специалистами на особый тип электростатических двигателей - коллоидные двигатели. В этих двигателях ускоряются большие заряженные молекулы и даже группы молекул или пылинки диаметром около 1 микрона .

Рис. 13. Схема магнитогидродинамического двигателя со скрещенными полями.

Магнитогидродинамические (электродинамические, электромагнитные, магнит -плазменные, «плазменные») двигатли . Эта группа двигателей объединяет огромное разнообразие схем, в которых плазма разгоняется до некоторой скорости истечения изменением магнитного поля или взаимодействием электрического и магнитного полей. Конкретные методы разгона плазмы, а также ее получения весьма различны. В плазменном двигателе (рис. 12) сгусток плазмы («плазмоид») разгоняется магнитным давлением . В «двигателе со скрещенными электрическим и магнитным полями» (рис. 13) через плазму,

помещенную в магнитное поле, пропускается электрический ток (плазма - хороший проводник), и в результате плазма приобретает скорость (подобно проволочной рамке с током, помещенной в магнитном поле) . Оптимальная скорость истечения для магнитогидродинамических двигателей, вероятно, будет порядка при реактивном ускорении

В лабораторных испытаниях магнитогидродинамических двигателей достигнуты скорости истечения до .

Следует отметить, что во многих случаях отнести двигатель к тому или иному классу бывает затруднительно.

Электрические двигатели с забором рабочего тела из верхней атмосферы . Летательный аппарат, движущийся в верхних слоях атмосферы, может использовать разреженную внешнюю среду в качестве рабочего тела для электрического двигателя. Подобный электрический двигатель аналогичен воздушно-реактивному двигателю в классе химических двигателей. Поступающий через воздухозаборник газ может использоваться в качестве рабочего тела или непосредственно, или после накопления (и, возможно, сжижения) его в баках. Возможен также вариант, при котором в баках одного летательного аппарата будет накапливаться рабочее тело и перекачиваться затем в баки другого аппарата.

Важным преимуществом всех типов электрических двигателей является простота регулировки тяги. Серьезной трудностью - необходимость освобождения от избытка тепла, выделяемого ядерным реактором. Этот избыток не уносится рабочим телом и не отдается окружающей среде, которая практически отсутствует в мировом пространстве. Освободиться от него можно лишь с помощью радиаторов, имеющих большую поверхность.

В 1964 г. в США было проведено первое успешное испытание в течение 31 мин ионного двигателя, установленного на контейнере, запущенном на баллистическую траекторию. В реальных условиях космоса ионные и плазменные двигатели быливпервые испытаны на советском корабле «Восход-1» и советской станции «Зонд-2», запущенных в 1964 г. («Зонд-2» - всторону Марса) ; наряду с обычными они использовались в системах ориентации. В апреле 1965 г. ионный двигатель на жидком цезии испытывался вместе с ядерным реактором «Снеп-10А» на американском спутнике Земли, развивая тягу (вместо Цезиевые ионные двигатели с расчетной регулируемой тягой и электротермические двигатели, использующие в качестве рабочего тела жидкий аммиак и развивающие тягу до испытывались с переменным успехом на спутниках серии запускавшихся в США с 1966 г.