Импульсный излучатель. Как сделать свч-пушку из микроволновки Как сделать катушку для электромагнитных импульсов

Мощный электромагнитный импульс (ЭМИ) появляется вследствие всплеска энергии, которая излучается или проводится таким источником как солнце или взрывное устройство. Если в вашем арсенале выживальщика присутствуют электротехнические или электронные устройства, необходимо предусмотреть их защиту от ЭМИ, чтобы они смогли продолжать работать после начала боевых действий, природной или техногенной катастрофы.

Что такое электромагнитный импульс

Всякий раз, когда проходит через провода, он производит электрическое и магнитное поля, которые исходят перпендикулярно движению тока. Размер этих полей пропорционален силе тока. Длина провода напрямую влияет на силу тока индуцированного электромагнитного импульса. Кроме того, даже обычное включение питания производит короткий всплеск электрической и магнитной энергии.

При этом всплеск настолько мал, что едва заметен. Например, коммутационные действия в электрической схеме, двигателях и системах зажигания для газовых двигателей так же производят к небольшим ЭМИ импульсам, которые могут вызвать помехи на соседнем радио или телевидении. Для их поглощения используются фильтры, удаляющие незначительные всплески энергии и помехи от них.

Большой выброс энергии производится, когда некий заряд электричества быстро разряжается. Данный электростатический разряд (ESD) может шокировать человека или вызвать опасные искры вокруг паров топлива. Так же многие помнят, что в детстве мы бы протирали ноги об ковер, а затем касались друзей, создавая разряд ESD. Это тоже одна из форм ESD.

Чем сильнее энергия импульса, тем больше он может повредить здания и воздействовать людей. Например, молния является мощной формой ЭМИ. может быть очень опасным и стать причиной катастрофы. К счастью, большинство молнии замкнуто на землю, где электрический заряд поглощается. Громоотвод изобрел Бенджамин Франклин, благодаря чему сегодня сохраняются многие здания и сооружения.

Такие события, как ядерные взрывы, высотные неядерные взрывы и солнечные бури могут создать мощный ЭМИ, который наносит ущерб электрическому и электронному оборудованию, расположенному недалеко от источника события. Все это угрожает электросетям и функционированию большинства электрических и электронных устройств в нашей жизни.

Поражающие факторы электромагнитного импульса

Опасность ЭМИ заключается в том, что он поражает системы жизнеобеспечения и транспорта. Поэтому, например, при мощном воздействии электромагнитного импульса современная незащищенная автотехника выходит из строя. Особенно это касается автомобилей, произведенных после 1980 года. Поэтому в случае техногенной катастрофы, начала боевых действий или всплеска солнечной активности оптимально использовать автомашины старого образца.

Кроме того, электромагнитный импульс поражает:

Компьютеры.
Дисплеи.
Принтеры.
Маршрутизаторы.
Трансформаторы.
Генераторы.
Источники питания.
Стационарные телефоны.
Любые электронные схемы.
Телевизоры.
Радио, DVD плееры.
Игровые устройства.
Медиа центры
Усилители.
Системы связи (передатчики, приемники)
Кабели (передачи данных, телефонные, коаксиальные, USB и т.д.)
Провода (особенно большой длины).
Антенны (внешние и внутренние).
Электрические шнуры питания.
Системы зажигания (авто и самолетов).
Электрические схемы СВЧ.
Кондиционеры.
Аккумуляторы (все виды).
Фонарики.
Реле.
Системы сигнализации.
Контроллеры заряда.
Преобразователи.
Калькуляторы.
Электроинструменты.
Электронные запчасти.
Зарядные устройства.
Устройства контроля (CO2, детекторы дыма и т.д.).
Кардиостимуляторы.
Слуховые аппараты.
Устройства медицинского мониторинга и т.п.

Факторы, которые определяют урон от ЭМИ

Сила входящего электромагнитного импульса.
Расстояние до источника импульса.
Угол линии удара от источника к вашему положению на вращающейся Земле.
Размер и форма объектов, которые получают и собирают ЭМИ.
Степень изоляции приборов и устройств от вещей, которые могут собирать и передавать энергию ЭМИ.
Защита или экранирование приборов и устройств.

Как защититься от ЭМИ: первые действия

С большой долей вероятности небольшие системы не будут затронуты ЭМИ (англ. EMP), если они изолированы от сети питания. Поэтому при поступлении предупреждения о грядущем EMP отключите все подключенные к электрической розетке приборы и устройства. Не забудьте вентиляцию и термостаты. Отключите солнечные панели и весь дом от общей сети, откройте запорные переключатели между солнечными панелями и инвертором, и между преобразователем и распределительной панелью питания. При слаженных действиях это займет несколько минут.

Общая защита от электромагнитного излучения

Предлагаемые защитные действия:

Отключайте электронные устройства, когда они не используется.
Отключайте электроприборы, когда они не используются.
Не оставляйте компоненты, такие как принтеры и сканеры, в режиме ожидания.
Используйте короткие кабели для работы.
Установите защитную индукцию вокруг компонентов.
Используйте компоненты с автономными батареями.
Используйте рамочные антенны.
Подключите все провода заземления к одной общей точке заземления.
По возможности используйте небольшие устройства, которые менее чувствительны к ЭМИ.
Установите MOV (металл-оксид-варистор) переходные протекторы на портативные генераторы.
Используйте ИБП для защиты электроники от всплеска EMP.
Используйте блокирования устройства.
Используйте гибридную защиту (например, полосовой фильтр с последующим молниеотводом).
Держите чувствительные приборы и устройства подальше от длинных трасс кабеля или электропроводки, антенн, растяжек, металлических башен, гофрированного металла, стальных ограждений, железнодорожных путей.
Устанавливайте кабель под землей, в экранированных кабельных каналах.
Постройте одну или несколько клеток Фарадея.

Следует заранее продумать защитную систему. Например, резервный генератор, вероятно, не будет поврежден солнечной бурей, но ЭМИ может повредить чувствительные электронные контроллеры, так что экранирование является целесообразным. И наоборот, такой прибор, как источник бесперебойного питания (ИБП) может быть полезным сам по себе в качестве компонента защиты. Если EMP происходит, резкий рост может уничтожить ИБП, но это, скорее всего, защитит от разрушения подключенные устройства и компоненты.

Как построить клетку Фарадея

Клетку Фарадея можно смастерить в домашних условиях из металлических емкостей и контейнеров, таких как мусорный бак или ведро, шкаф, сейф, старая микроволновка. Подойдет любой объемный предмет, который имеет непрерывную поверхность без зазоров или больших отверстий. Необходимо наличие плотно облегающей крышки.

Установите непроводящий материал (картон, дерево, бумага, листы пены или пластика) на всех внутренних сторонах клетки Фарадея, чтобы сохранить содержимое от прикосновения металла. Кроме того, можно обернуть каждый элемент в пузырчатую пленку или пластик. Все приборы, которые находятся внутри, должны быть изолированы от всего остального и особенно от металлического контейнера.

Что поместить в клетку Фарадея

Поместите внутрь клетки весь электронный и электротехнический арсенал, который входит в НЗ, и те компоненты, которые закуплены «впрок». Так же там необходимо расположить все, что может быть чувствительно к ЭМИ, в случае получения предупредительного сигнала. В том числе:

Батарейки для радио.
Портативные рации.
Портативные телевизоры.
Светодиодные фонарики.
Солнечное зарядное устройство.
Компьютер (ноутбук или планшет).
Сотовые телефоны и смартфоны.
Различные лампочки.
Зарядные шнуры для мобильных телефонов, планшетов и т.п.

Как защитить важную информацию от ЭМИ

Имейте в виду, что электромагнитный импульс может нарушить инфраструктуру на длительное время, а в случае – навсегда. Поэтому стоит заранее подготовиться, и произвести резервное копирование важных файлов с помещением их на разных носителях в разные клетки Фарадея.

Вместо послесловия

Если предупреждение об ЭМИ небыло получено, но вы видите яркую вспышку с последующим отключением энергосистем, действуйте по своему усмотрению. Ведь нельзя знать заранее, насколько тяжелым и опасным будет электромагнитный импульс, дальность которого при некоторых видах взрывов достигает 1000 км. Но благодаря подготовке и предварительному планированию можно определить, насколько реально мы сможем выжить в мире после ЭМИ.

И будете в безопасности!

Научно-технический прогресс стремительно развивается. К сожалению, его результаты проводят не только к улучшению нашей жизни, к новым удивительным открытиям или победам над опасными недугами, но и к появлению нового, более совершенного оружия.

На протяжении всего прошлого столетия человечество «ломало голову» над созданием новых, еще более эффективных средств уничтожения. Отравляющие газы, смертоносные бактерии и вирусы, межконтинентальные ракеты, термоядерное оружие . Не бывало еще такого периода в человеческой истории, чтобы ученые и военные сотрудничали так тесно и, к сожалению, эффективно.

Во многих странах мира активно проводятся разработки оружия на основе новых физических принципов. Генералы весьма внимательно наблюдают за последними достижениями науки и стараются поставить их себе на службу.

Одним из наиболее перспективных направлений оборонных исследований являются работы в области создания электромагнитного оружия. В желтой прессе оно обычно называется «электромагнитная бомба». Подобные исследования стоят весьма недешево, поэтому позволить их себе могут только богатые страны: США, Китай, Россия, Израиль.

Принцип действия электромагнитной бомбы заключается в создании мощного электромагнитного поля, что выводит из строя все устройства, работа которых связана с электричеством.

Это не единственный способ использования электромагнитных волн в современном военном деле: созданы передвижные генераторы электромагнитного излучения (ЭМИ), которые могут вывести из строя электронику противника на расстоянии до нескольких десятков километров. Работы в этой области активно проводятся в США, России, Израиле.

Существуют и еще более экзотические способы военного применения электромагнитного излучения, чем электромагнитная бомба. Большая часть современного оружия использует энергию пороховых газов для поражения противника. Однако все может измениться уже в ближайшие десятилетия. Для запуска снаряда также будут использованы электромагнитные токи.

Принцип действия такой «электрической пушки» довольно прост: снаряд, сделанный из проводящего материала, под воздействием поля выталкивается с большой скоростью на довольно большое расстояние. Эту схему планируют применять на практике уже в ближайшее время. Наиболее активно в этом направлении работают американцы, об успешных разработках оружия с таким принципом действия в России неизвестно.

Как вы представляете себе начало Третьей мировой войны? Ослепительные вспышки термоядерных зарядов? Стоны людей, умирающих от сибирской язвы? Удары гиперзвуковых летательных аппаратов из космоса?

Все может быть совсем по-другому.

Вспышка действительно будет, но не очень сильная и не испепеляющая, а похожая, скорее, на раскат грома. Самое «интересное» начнется потом.

Загорятся даже выключенные люминесцентные лампы и экраны телевизоров, в воздухе повиснет запах озона , а проводка и электрические приборы начнут тлеть и искриться. Гаджеты и бытовые приборы, в которых есть аккумуляторы, нагреются и выйдут из строя.

Перестанут работать практически все двигатели внутреннего сгорания. Отключится связь, не будут работать средства массовой информации, города погрузятся во тьму.

Люди не пострадают, в этом отношении электромагнитная бомба – очень гуманный вид оружия. Однако подумайте сами, во что превратится жизнь современного человека, если убрать из него устройства, принцип действия которых основан на электричестве.

Общество, против которого будет применено орудие подобного действия, окажется отброшенным на несколько веков назад.

Как это работает

Как можно создать столь мощное электромагнитное поле, которое способно оказывать подобное действие на электронику и электрические сети? Электронная бомба фантастическое оружие или подобный боеприпас можно создать на практике?

Электронная бомба уже была создана и уже два раза применялась. Речь идет о ядерном или термоядерном оружии. При подрыве подобного заряда одним из поражающих факторов является поток электромагнитного излучения.

В 1958 году американцы взорвали над Тихим океаном термоядерную бомбу, что привело к нарушению связи во всем регионе, ее не было даже в Австралии, а на Гавайских островах пропал свет.

Гамма-излучение, которое в избытке образуется при ядерном взрыве, вызывает сильнейший электронный импульс, что распространяется на сотни километров и выключает все электронные приборы. Сразу после изобретения ядерного оружия, военные занялись разработкой защиты собственной аппаратуры от подобного действия взрывов.

Работы, связанные с созданием сильного электромагнитного импульса, как и разработки средств защиты от него проводятся во многих странах (США, Россия, Израиль, Китай), но почти везде они засекречены.

Можно ли создать работающее устройство, на других менее разрушительных принципах действия, чем ядерный взрыв. Оказывается, что можно. Более того, подобными разработками активно занимались в СССР (продолжают и в России). Одним из первых, кто заинтересовался данным направлением, был знаменитый академик Сахаров.

Именно он первым предложил конструкцию конвенционного электромагнитного боеприпаса. По его задумке высокоэнергетическое магнитное поле можно получить путем сжатия магнитного поля соленоида обычным взрывчатым веществом . Подобное устройство можно было поместить в ракету, снаряд или бомбу и отправить на объект неприятеля.

Однако у подобных боеприпасов есть один недостаток: их малая мощность. Преимуществом подобных снарядов и бомб является их простота и низкая стоимость.

Можно ли защититься?

После первых испытаний ядерного оружия и определения электромагнитного излучения, как одного из его основных поражающих факторов, в СССР и США начали работать над защитой от ЭМИ.

К этому вопросу в СССР подходили очень серьезно. Советская армия готовилась воевать в условиях ядерной войны, поэтому вся боевая техника изготавливалась с учетом возможного воздействия на нее электромагнитных импульсов. Сказать, что защиты от него нет совсем – это явное преувеличение.

Вся военная электроника оборудовалась специальными экранами и надежно заземлялась. В ее состав включались специальные предохранительные устройства, разрабатывалась архитектура электроники максимально устойчивая к ЭМИ.

Конечно, если попасть в эпицентр применения электромагнитной бомбы большой мощности, то защита будет пробита, но на определенном расстоянии от эпицентра, вероятность поражения будет существенно ниже. Электромагнитные волны распространяются во все стороны (как волны на воде) поэтому их сила убывает пропорционально квадрату расстояния.

Кроме защиты, разрабатывались и средства радиоэлектронного поражения. С помощью ЭМИ планировали сбивать крылатые ракеты, есть информация об успешном применении этого метода.

В настоящее время разрабатывают передвижные комплексы, что могут испускать ЭМИ высокой плотности, нарушая работу вражеской электроники на земле и сбивая летательные аппараты.

Видео об электромагнитной бомбе

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Этот серьезный проект показывает, как получить импульс электромагнитной энергии в несколько мегаватт, который может нанести непоправимый вред электронному компьютеризированному и чувствительному к электромагнитным помехам коммуникационному оборудованию. Ядерный взрыв вызывает подобный импульс, для защиты от него электронных устройств необходимо принимать специальные меры. Этот проект требует накопления смертельного количества энергии, и его не следует пытаться реализовать вне специализированной лаборатории. Подобное устройство можно использовать для вывода из строя компьютерных систем управления автомобилем с целью остановки автомобиля в неординарных случаях угона или если за рулем находится пьяный

Рис. 25.1. Лабораторный электромагнитный импульсный генератор

и опасный для окружающих автомобилистов водитель. Электронное оборудование можно протестировать с помощью электронного импульсного генератора на чувствительность к мощным импульсным помехам – к молниям и потенциальному ядерному взрыву (это актуально для военного электронного оборудования).

Проект описан здесь без указания всех деталей, указаны только основные компоненты. Используется дешевый открытый искровой разрядник, но он даст только ограниченные результаты. Для достижения оптимальных результатов необходим газовый или радиоизотопный разрядник, который эффективен для создания помех как при потенциальном ядерном взрыве (рис. 25.1).

Общее описание устройство

Генераторы ударной волны способны вырабатывать сфокусированную акустическую или электромагнитную энергию, которая может разрушать предметы, применяться в медицинских целях, например, для разрушения камней во внутренних органах человека (почках, мочевом пузыре и т.д.). Генератор электромагнитных импульсов может вырабатывать электромагнитную энергию, которая может разрушать чувствительную электронику в компьютерах и микропроцессорном оборудовании. Нестабилизированные индуктивно-емкостные цепи LC могут вырабатывать импульсы в несколько гигаватт за счет использования устройств взрывания провода. Эти импульсы высокой энергии – электромагнитные импульсы (в иностранной технической литературе ЕМР – ElectroMagnetic Pulses) можно использовать для тестирования твердости металла параболических и эллиптических антенн, гудков и других направленных дистанционных воздействий на предметы.

Например, в настоящее время ведутся исследования по разработке системы, которая будет выводить автомобиль из строя во время опасной погони на высоких скоростях за человеком, совершившим противоправное действие, например, угонщиком или пьяным водителем. Секрет заключается в генерации обладающего достаточной энергией импульса для сжигания электронных управляющих процессорных модулей автомобиля. Это гораздо проще выполнить, когда автомобиль покрыт пластиком или оптоволокном, чем когда он покрыт металлом. Экранирование металлом создает дополнительные проблемы исследователю, разрабатывающему практически применимую систему. Можно построить устройство и для этого тяжелого случая, но оно может быть дорогостоящим и оказать вредное воздействие на дружественные устройства, заодно выводя их из строя. Поэтому исследователи находятся в поиске оптимальных решений для мирных и военных целей применения электромагнитных импульсов (ЕМР).

Цель проекта

Цель проекта заключается в генерации пикового импульса энергии для тестирования на прочность электронного оборудования. В частности, данный проект исследует использование подобных устройств для выведения из строя транспортных средств за счет разрушения микросхем компьютера. Мы проведем эксперименты по разрушению цепей электронных устройств с помощью направленной ударной волны.

Внимание! Донный проект использует смертельно опасную электрическую энергию, которая при неправильном контакте может убить человека мгновенно.

Система высокой энергии, которая будет собрана, использует взрывающийся провод, который может создать эффекты, подобные шрапнели. Разряд системы может серьезно повредить электронику близко расположенных компьютеров и другого аналогичного оборудования.

Конденсатор С заряжается от источника тока до напряжения источника питания в течение определенного периода времени. Когда он достигает напряжения, соответствующего определенному уровню запасенной энергии, ему дается возможность быстро разрядиться через индуктивность резонансного LC-конту- ра. Генерируется мощная, недемпфированная волна на собственной частоте резонансного контура и на ее гармониках. Индуктивность L резонансной цепи может состоять из катушки и индуктивности связанного с ней провода, а также собственной индуктивности конденсатора, которая составляет около 20 нГн. Конденсатор цепи является накопителем энергии и также оказывает влияние на резонансную частоту системы.

Излучение энергетического импульса может быть достигнуто посредством проводящей конической секции или металлической структуры в форме рупора. Некоторые экспериментаторы могут использовать полуволновые элементы с питанием, подаваемым на центр катушкой, связанной с катушкой резонансной цепи. Эта полуволновая антенна состоит из двух четвертьволновых секций, настроенных на частоту резонансной схемы. Они представляют собой катушки, намотка которых имеет примерно одинаковую длину с длиной четверти волны. Антенна имеет две радиально направленные части, параллельные длине или ширине антенны. Минимальное излучение происходит в точках, расположенных по оси или на концах, но мы не проверяли на практике этот подход. Например, газоразрядная лампа будет вспыхивать ярче на расстоянии от источника, индицируя мощный направленный импульс электромагнитной энергии.

Наша тестовая импульсная система вырабатывает электромагнитные импульсы в несколько мегаватт (1 МВт широкополосной энергии), которые распространяются с помощью конической секционной антенны, состоящей из параболического рефлектора диаметром 100-800 мм. Расширяющийся металлический рупор 25×25 см также обеспечивает определенную степень воздействия. Специальный

Рис. 25.2. Функциональная схема импульсного электромагнитного генератора Примечание:

Базовая теория работы устройства:

Резонансная схема LCR состоит из указанных на рисунке компонентов. Конденсатор С1 заряжается от зарядного устройства постоянного тока током l c . Напряжение V на С1 опг*а’ ouivwrcs. соотношением:

Искровой разрядник GAP установлен на запуск при напряжении V чуть ниже50000 В. При запуске пиковый ток достигает значения:

di/dt-V/L.

Период отклика схемы является функцией от 0,16 х (LC) 5 . Kj jhj />»–гп ц > затем i ьтэрное гея в индуктивность схемы за VaX, причем пиковое значение тока приводит к взрыву провода и прерывает этотток йог» с{№лстшнно перед тем, как он достигнет пикового значения. Иц’ .^сп*»*»^ энергия (LP) виа*/» – «сдается в виде вчрьва и в jftpcxa цл^хтигггуктосго электромагнитного излучения. Пиковая мощность ипрмоьл*тз1 описанным ниже образом и щ»«**и*гг многие мегаватты!

1. Цикл заряд а: dv=ldt/C.

(Выражает напряжение заряда на конденсаторе в функции времени, где I – постоянный ток.)

2. Накопленная энергия в С как функция от напряжения: £=0,5CV

(Выражает энергию в джоулях при увеличении напряжения.)

3. Время отклика V* цикла пикового тока: 1,57 (LC) 0 – 5 . (Выражает время для первого пика резонансного тока при запуске искрового разрядника.)

4. Пиковый ток вточке V* цикла: V(C/ Ц 05 (Выражает пиковый ток.)

5. Исходный отклик в функции от времени:

Ldi/dt+iR+ 1/С+ 1/CioLidt=0.

(Выражает напряжение как функцию от времени.)

6. Энергия катушки индуктивности в д жоулях: E=0,5U 2 .

7. Отклик, когда схема разомкнута при максимальном токе через L: LcPi/dt 2 +Rdi/dt+it/С=dv/dt.

Из этого выражения видно, что энергия катушки должна направляться куда-либо в течение очень короткого времени, результатом чего является взрывное поле высвобождения энергии Е х В.

Мощный импульс в много мегаватт вд иапазонеулырвныилс<*хчастот можно получить засчет д естабилизации LCR- схемы, как показано выше. Единственным ограничивающим фактором является собственное сопротивление, которое всегда присутствует в разных формах, например: провода, пивирхнистн-лй эффект, потери в диэлектриках и переключателях и т.д- Потери могут быть минимизированы для достижения оптимальных результатов. электромагнитная волна рвадихастль должна излучаться антенной, которая можетбытъ в виде параболической тарелки микроволновой печи или настроенного их**» in >чг>;*ттеля. i-M. < г п1гч электромагнитная волна будетзависетъотгеометрии конструкции. Большая длина г* Х’бодз обеспечит лучшие характеристики магнитного поля В, а короткие приесда в большей степени образуют поле электрическое поле Е. Эти параметры войдут в уравнения взаимодействия эффективности излучения антенны. Наилучшим подходом здесь является экспериментирование с конструкцией антенны для достижения оптимальных результатов с использованием ваших математических знаний для улучшения основных параметров. Повреждения схемы обычно являются результатом очень высокого di/dt (поле «В») импульса. Это предмет для обсуждения!

конденсатор 0,5 мкФ с малой индуктивностью заряжается за 20 с с помощью устройства ионного заряда, описанного в главе 1 «Антигравитационный проект», и дорабатывается, как показано. Можно достичь более высокой скорости заряда с помощью систем с более высоким током, которые можно получить по специальному заказу для более серьезных исследований через сайт www.amasingl.com.

Радиочастотный импульс высокой энергии можно генерировать также и в случае, где выход импульсного генератора взаимодействует с полноразмерной полуволновой антенной с центральным питанием, настроенной на частоты в диапазоне 1-1,5 МГц. Реальная дальность действия при частоте 1 МГц – более 150 м. Такая дальность действия может быть избыточна для многих экспериментов. Однако это нормально для коэффициента излучения, равного 1, во всех других схемах этот коэффициент меньше 1. Можно уменьшить длину реальных элементов с помощью настроенной четвертьволновой секции, состоящей из 75 м провода, намотанных через интервалы или с использованием двух-трех- метровых трубок из поливинилхлорида PVC. Эта схема вырабатывает импульс низкочастотной энергии.

Пожалуйста, имейте в виду, как это уже указывалось ранее, что импульсный выход этой системы может причинить вред компьютерам и любым приборам с микропроцессорами и другими аналогичными схемами на значительном расстоянии. Всегда будьте осторожны при тестировании и использовании этой системы, она может повредить устройства, которые просто находятся рядом. Описание основных частей, использованных в нашей лабораторной системе, дает рис. 25.2.

Конденсатор

Конденсатор С, используемый для подобных случаев, должен обладать очень низкой собственной индуктивностью и сопротивлением разряда. В то же время этот компонент должен обладать способностью к накоплению достаточной энергии для генерации необходимого импульса высокой энергии заданной частоты. К сожалению, два этих требования вступают в противоречие друг с другом, их трудно выполнить одновременно. Конденсаторы высокой энергии всегда будут обладать большей индуктивностью, чем конденсаторы низкой энергии. Другим важным фактором является использование сравнительного высокого напряжения для генерации сильных токов разряда. Эти значения необходимы для преодоления собственного комплексного импеданса последовательно соединенных индуктивного и резистивного сопротивлений на пути разряда.

В данной системе используется конденсатор 5 мкФ при 50000 В с индуктивностью 0,03 мкГн. Необходимая нам основная частота для схемы низкой энергии составляет 1 МГц. Энергия системы составляет 400 Дж при 40 кВ, что определяется соотношением:

Е = 1/2 CV 2 .

Катушка индуктивности

Вы можете использовать катушку из нескольких витков для экспериментов с низкими частотами с двойной антенной. Размеры определяются формулой индуктивности воздуха:

Рис. 25.7. Установка искрового разрядника для соединения с антенной при работе с низкой частотой

Применение устройство

Данная система предназначена для исследования чувствительности электронного оборудования к электромагнитным импульсам. Систему можно видоизменить для использования в полевых условиях и работы от перезаряжаемых аккумуляторных батарей. Ее энергию можно увеличить до уровня импульсов электромагнитной энергии в несколько килоджоулей, на собственный страх и риск пользователя. Нельзя предпринимать попыток изготовления своих вариантов устройства или использовать данное устройство, если вы не имеете достаточного опыта в использовании импульсных систем высокой энергии.

Импульсы электромагнитной энергии можно сфокусировать или запускать параллельно с помощью параболического отражателя. Экспериментальной мишенью может служить любое электронное оборудование и даже газоразрядная лампа. Вспышка акустической энергии может вызвать звуковую ударную волну или высокое звуковое давление на фокусном расстоянии параболической антенны.

Источники приобретении компонентов и деталей

Устройства заряда высокого напряжения, трансформаторы, конденсаторы, газовые искровые разрядники или радиоизотопные разрядники, импульсные генераторы MARX до 2 MB, генераторы ЕМР можно приобрести через сайт www.amasingl.com .

Электромагнитный импульс (ЭМИ) – это естественное явление, вызванное резким ускорением частиц (в основном, электронов), которое приводит к возникновению интенсивного всплеска электромагнитной энергии. Повседневными примерами ЭМИ могут служить следующие явления: молния, системы зажигания двигателей внутреннего сгорания и солнечные вспышки. Несмотря на то, что электромагнитный импульс способен вывести из строя электронные устройства, данную технологию можно применить для целенаправленного и безопасного отключения электронных устройств или для обеспечения безопасности персональных и конфиденциальных данных.

Шаги

Создание элементарного электромагнитного излучателя

    Соберите необходимые материалы. Для создания простейшего электромагнитного излучателя вам понадобится одноразовый фотоаппарат, медная проволока, резиновые перчатки, припой, паяльник и железный прут. Все эти предметы можно приобрести в ближайшем строительном магазине.

    • Чем толще проволоку вы возьмете для эксперимента, тем мощнее получится итоговый излучатель.
    • Если вы не сможете найти железный прут, можете заменить его стержнем из неметаллического материала. Однако обратите внимание, что подобная замена негативно скажется на мощности производимого импульса.
    • В ходе работы с электрическими деталями, способными удерживать заряд, или при пропускании электрического тока через объект, мы настоятельно рекомендуем надевать резиновые перчатки, дабы избежать возможного электрического удара.
  1. Соберите электромагнитную катушку. Электромагнитная катушка – это устройство, которое состоит из двух отдельных, но в то же время взаимосвязанных деталей: проводника и сердечника. В данном случае в качестве сердечника будет выступать железный прут, а в качестве проводника – медная проволока.

    Припаяйте концы электромагнитной катушки к конденсатору. Конденсатор, как правило, имеет вид цилиндра с двумя контактами, а найти его можно на любой монтажной плате. В одноразовом фотоаппарате такой конденсатор отвечает за вспышку. Перед отпаиванием конденсатора обязательно вытащите батарейку из фотоаппарата, иначе вас может ударить током.

    Найдите безопасное место для тестирования своего электромагнитного излучателя. В зависимости от задействованных материалов, эффективный радиус действия вашего ЭМИ будет составлять примерно один метр в любом направлении. Как бы то ни было, любая электроника, попавшая под ЭМИ, будет уничтожена.

    • Не забывайте, что ЭМИ воздействует на все без исключения устройства в радиусе поражения, начиная от аппаратов жизнеобеспечения, вроде кардиостимуляторов, и заканчивая мобильными телефонами. Любой ущерб, причиненный этим устройством посредством ЭМИ, может повлечь за собой юридические последствия.
    • Заземленная площадка, вроде пня или пластмассового стола, является идеальной поверхностью для тестирования электромагнитного излучателя.
  2. Так как электромагнитное поле воздействует лишь на электронику, подумайте о приобретении какого-то недорогого устройства в ближайшем магазине электроники. Эксперимент можно считать успешным, если после активации ЭМИ электронное устройство перестанет работать.

    • Множество магазинов канцелярских товаров торгуют достаточно недорогими электронными калькуляторами, с помощью которых вы можете проверить эффективность созданного излучателя.
  3. Вставьте батарейку обратно в камеру. Для восстановления заряда необходимо пропустить через конденсатор электричество, которое впоследствии обеспечит вашу электромагнитную катушку током и создаст электромагнитный импульс. Поместите объект для испытаний как можно ближе к ЭМ излучателю.

    Дайте конденсатору зарядиться. Позвольте батарейке снова зарядить конденсатор, отсоединив его от электромагнитной катушки, затем уже в резиновых перчатках или пластиковыми щипцами снова их соедините. Работая голыми руками, вы рискуете получить удар током.

    Включите конденсатор. Активация вспышки на камере высвободит накопленное в конденсаторе электричество, которое при прохождении через катушку создаст электромагнитный импульс.

    Создание портативного устройства ЭМ излучения

    1. Соберите все необходимое. Создание портативного устройства ЭМИ пройдет более гладко, если при себе у вас будут все необходимые инструменты и компоненты. Вам понадобятся следующие предметы:

      Вытащите монтажную плату из фотоаппарата. Внутри одноразового фотоаппарата находится монтажная плата, которая и отвечает за его функционал. Для начала вытащите батарейки, а затем уже и саму плату, не забыв при этом отметить положение конденсатора.

      • Работая с фотоаппаратом и конденсатором в резиновых перчатках, вы тем самым обезопасите себя от возможного электрического удара.
      • Конденсаторы, как правило, имеют вид цилиндра с двумя контактами, прикрепленными к плате. Это одна из важнейших деталей будущего устройства ЭМИ.
      • После того как вы вытащите батарейку, щелкните пару раз фотоаппаратом, чтобы израсходовать накопленный заряд в конденсаторе. Из-за накопленного заряда вас в любой момент может ударить током.
    2. Обмотайте медную проволоку вокруг железного сердечника. Возьмите достаточное количество медной проволоки, чтобы равномерно идущие витки могли полностью покрыть железный сердечник. Также убедитесь, чтобы витки плотно прилегали друг к другу, иначе это негативно скажется на мощности ЭМИ.

      • Оставьте небольшое количество провода на краях обмотки. Они нужны, чтобы подсоединить к катушке остальную часть устройства.
    3. Нанесите изоляцию на радиоантенну. Радиоантенна послужит в качестве рукоятки, на которой будут закреплены катушка и плата от фотоаппарата. Оберните основание антенны изолентой, дабы уберечься от удара током.

      Закрепите плату на плотном куске картона. Картон послужит в качестве еще одного слоя изоляции, который убережет вас от неприятного электрического разряда. Возьмите плату и изолентой закрепите ее на картоне, но так, чтобы она не закрывала дорожки электропроводящей цепи.

      • Закрепите плату лицевой стороной вверх, чтобы конденсатор и его проводящие дорожки не контактировали с картоном.
      • На картонной подложке для печатной платы также должно хватить достаточно места для батарейного отсека.
    4. Закрепите электромагнитную катушку на конце радиоантенны. Поскольку для создания ЭМИ электрический ток должен пройти через катушку, неплохо бы добавить второй слой изоляции, поместив небольшой кусочек картона между катушкой и антенной. Возьмите изоленту и закрепите катушку на куске картона.

      Припаяйте источник питания. Найдите на плате разъемы для батарейки и соедините их с соответствующими контактами батарейного отсека. После этого можете закрепить все это дело изолентой на свободном участке картонки.

      Подсоедините катушку к конденсатору. Необходимо припаять края медной проволоки к электродам вашего конденсатора. Между конденсатором и электромагнитной катушкой также следует установить переключатель, который бы управлял потоком электроэнергии между этими двумя компонентами.

      • Во время данного этапа сборки устройства ЭМИ вы должны оставаться в резиновых перчатках. Из-за оставшегося заряда в конденсаторе вас может ударить током.
    5. Прикрепите картонную подложку к антенне. Возьмите изоленту и прочно прикрепите картонную подложку вместе со всеми деталями к радиоантенне. Закрепите ее над основанием антенны, которое вы уже должны были обмотать изолентой.

      Найдите подходящий объект для испытаний. Простой и недорогой калькулятор идеально подойдет для тестирования портативного устройства ЭМИ. В зависимости от материалов и оборудования, использованных при конструировании вашего устройства, ЭМ поле будет работать либо в непосредственной близости от катушки, либо покрывать расстояние до одного метра вокруг нее.

      • Любое электронное устройство, попавшее в радиус действия ЭМ поля, будет выведено из строя. Убедитесь, что рядом с выбранной тестовой площадкой нет электронных приборов, которым бы вы не хотели навредить. Вся ответственность за поврежденное имущество будет лежать на вас.
    6. Протестируйте свое портативное устройство ЭМИ. Проверьте, чтобы переключатель устройства находился в положении «ВЫКЛ», после чего вставьте батарейки в батарейный отсек на картонной подложке. Держите устройство за изолированное основание антенны (словно протоновый ускоритель из «Охотников за привидениями»), направьте катушку в сторону объекта для испытаний и переключите выключатель в положение «ВКЛ».

Инструкция

Возьмите ненужный карманный пленочный фотоаппарат со вспышкой. Вытащите из него батарейки. Наденьте резиновые перчатки и разберите аппарат.

Разрядите накопительный конденсатор вспышки. Для этого возьмите сопротивлением около 1 кОм и мощностью 0,5 Вт, согните его выводы, зажмите его в небольших плоскогубцах с изолированными ручками, после чего, удерживая резистор только при помощи плоскогубцев, замкните им конденсатор на несколько десятков секунд.После этого окончательно разрядите конденсатор, замкнув его лезвием отвертки с изолированной ручкой еще на несколько десятков секунд.

Измерьте напряжение - оно не должно превышать нескольких вольт. При необходимости, разрядите конденсатор повторно.Напаяйте на выводы конденсатора перемычку.

Теперь разрядите конденсатор в цепи синхроконтакта. Он имеет малую емкость, поэтому для его разряда достаточно кратковременно замкнуть синхроконтакт. Держите при этом руки подальше от лампы-вспышки, поскольку при срабатывании синхроконтакта на нее со специального повышающего поступает импульс высокого напряжения.

Возьмите полый каркас диаметром в несколько . Намотайте на него несколько сотен витков изолированного провода диаметром около миллиметра. Поверх обмотки намотайте несколько слоев изоляционной ленты.

Катушку включите последовательно с накопительным конденсатором вспышки.Если у фотоаппарата нет кнопки проверки вспышки, подключите параллельно синхроконтакту кнопку с хорошей изоляцией, например, звонковую.

Сделайте в корпусе аппарата небольшие выемки для вывода проводов от кнопки и катушки. Они нужны для того, чтобы при сборке корпуса эти провода не оказались пережатыми, что грозит их обрывом. Снимите перемычку с накопительного конденсатора вспышки. Соберите аппарат, после чего снимите резиновые перчатки.

Вставьте в аппарат батарейки. Включите его, отвернув вспышку от себя, дождитесь зарядки конденсатора, после чего вставьте в катушку лезвие отвертки. Удерживая отвертку за ручку, чтобы она не вылетела, нажмите кнопку. Одновременно со вспышкой возникнет электромагнитный импульс, который намагнитит отвертку.

Если отвертка намагнитилась недостаточно хорошо, можно повторить операцию еще несколько раз. По мере использования отвертки она будет постепенно терять намагниченность. Беспокоиться по этому поводу не стоит - ведь теперь у вас есть прибор, которым ее можно всегда восстановить.Учтите, что намагниченные отвертки нравятся не всем домашним мастерам. Одни считают их очень удобными, другие - наоборот, очень неудобными.