Использование топливных элементов для энергоснабжения зданий. Водородные топливные элементы Водородно-кислородный топливный элемент

С точки зрения «зеленой» энергетики у водородных топливных элементов крайне высокий КПД - 60%. Для сравнения: КПД лучших двигателей внутреннего сгорания составляет 35-40%. Для солнечных электростанций коэффициент составляет всего 15-20%, но сильно зависит от погодных условий. КПД лучших крыльчатых ветряных электростанций доходит до 40%, что сравнимо с парогенераторами, но ветряки также требуют подходящих погодных условий и дорогого обслуживания.

Как мы видим, по этому параметру водородная энергетика является наиболее привлекательным источником энергии, но все же существует ряд проблем, мешающих ее массовому применению. Самая главная из них - процесс добычи водорода.

Проблемы добычи

Водородная энергетика экологична, но не автономна. Для работы топливному элементу нужен водород, который не встречается на Земле в чистом виде. Водород нужно получать, но все существующие сейчас способы либо очень затратны, либо малоэффективны.

Самым эффективным с точки зрения объёма полученного водорода на единицу затраченной энергии считается метод паровой конверсии природного газа . Метан соединяют с водяным паром при давлении 2 МПа (около 19 атмосфер, т. е. давление на глубине около 190 м) и температуре около 800 градусов, в результате чего получается конвертированный газ с содержанием водорода 55-75%. Для паровой конверсии необходимы огромные установки, которые могут быть применимы лишь на производстве.


Трубчатая печь для паровой конверсии метана - не самый эргономичный способ добычи водорода. Источник: ЦТК-Евро

Более удобный и простой метод - электролиз воды. При прохождении электрического тока через обрабатываемую воду происходит серия электрохимических реакций, в результате которых образуется водород. Существенный недостаток этого способа - большие энергозатраты, необходимые для проведения реакции. То есть получается несколько странная ситуация: для получения водородной энергии нужна… энергия. Во избежание возникновения при электролизе ненужных затрат и сохранения ценных ресурсов некоторые компании стремятся разработать системы полного цикла «электричество - водород- электричество», в которых получение энергии становится возможным без внешней подпитки. Примером такой системы является разработка Toshiba H2One.

Мобильная электростанция Toshiba H2One

Мы разработали мобильную мини-электростанцию H2One, преобразующую воду в водород, а водород в энергию. Для поддержания электролиза в ней используются солнечные батареи, а излишки энергии накапливаются в аккумуляторах и обеспечивают работу системы в отсутствие солнечного света. Полученный водород либо напрямую подается на топливные ячейки, либо отправляется на хранение во встроенный бак. За час электролизер H2One генерирует до 2 м 3 водорода, а на выходе обеспечивает мощность до 55 кВт. Для производства 1 м 3 водорода станции требуется до 2,5 м 3 воды.

Пока станция H2One не способна обеспечить электричеством крупное предприятие или целый город, но для функционирования небольших районов или организаций ее энергии будет вполне достаточно. Благодаря своей мобильности она может использоваться также как и временное решение в условиях стихийных бедствий или экстренного отключения электричества. К тому же, в отличие от дизельного генератора, которому для нормального функционирования необходимо топливо, водородной электростанции достаточно лишь воды.

Сейчас Toshiba H2One используется лишь в нескольких городах в Японии - к примеру, она снабжает электричеством и горячей водой железнодорожную станцию в городе Кавасаки.


Монтаж системы H2One в городе Кавасаки

Водородное будущее

Сейчас водородные топливные элементы обеспечивают энергией и портативные пауэр-банки, и городские автобусы с автомобилями, и железнодорожный транспорт (более подробно об использовании водорода в автоиндустрии мы расскажем в нашем следующем посте). Водородные топливные элементы неожиданно оказались отличным решением для квадрокоптеров - при аналогичной с аккумулятором массе запас водорода обеспечивает до пяти раз большее время полета. При этом мороз никак не влияет на эффективность. Экспериментальные дроны на топливных элементах производства российской компании AT Energy применялись для съемок на Олимпиаде в Сочи.

Стало известно, что на грядущих Олимпийских играх в Токио водород будет использоваться в автомобилях, при производстве электричества и тепла, а также станет главным источником энергии для олимпийской деревни. Для этого по заказу Toshiba Energy Systems & Solutions Corp. в японском городе Намиэ строится одна из крупнейших в мире станций по производству водорода. Станция будет потреблять до 10 МВт энергии, полученной из «зеленых» источников, генерируя электролизом до 900 тонн водорода в год.

Водородная энергетика - это наш «запас на будущее», когда от ископаемого топлива придется окончательно отказаться, а возобновляемые источники энергии не смогут покрывать нужды человечества. Согласно прогнозу Markets&Markets объем мирового производства водорода, который сейчас составляет $115 млрд, к 2022 году вырастет до $154 млрд. Но в ближайшем будущем массовое внедрение технологии вряд ли произойдет, необходимо еще решить ряд проблем, связанных с производством и эксплуатацией специальных энергоустановок, снизить их стоимость. Когда технологические барьеры будут преодолены, водородная энергетика выйдет на новый уровень и, возможно, будет так же распространена, как сегодня традиционная или гидроэнергетика.

Топливный элемент - что это такое? Когда и как он появился? Зачем он нужен и почему о них в наше время так часто говорят? Каковы его область примения, характеристики и свойства? Неудержимый прогресс требует ответов на все эти вопросы!

Что такое топливный элемент?

Топливный элемент - это химический источник тока или электрохимический генератор, это устройство для преобразования химической энергии в электрическую. В современной жизни химические источники тока используются повсеместно и представляют собой аккумуляторы мобильных телефонов, ноутбуков, КПК, а также аккумуляторные батареи в автомобилях, источниках бесперебойного питания и т.п. Следующим этапом развития данной области будет повсеместное распространение топливных элементов и это уже никем неопровергаемый факт.

История топливных элементов

История топливных элементов - это ещё одна история о том, как некогда открытые на Земле свойства вещества нашли широкое применение далеко в космосе, а на рубеже тысячелетий вернулись с небес на Землю.

Всё началось в 1839 году , когда немецкий химик Кристиан Шёнбейн опубликовал принципы работы топливного элемента в «Философском журнале». В этом же году англичанин, выпускник Оксфорда, Уильям Роберт Гроув сконструировал гальванический элемент, в последствии названный гальваническим элементом Гроува, он же признан первым топливным элементом. Само название "топливный элемент" было подарено изобретению в год его юбилея - в 1889 году. Людвиг Монд и Карл Лангер - авторы термина.

Немного ранее, в 1874г., Жюль Верн в романе «Таинственный остров» предсказал нынешнюю энергетическую ситуацию, написав, что «Вода в один прекрасный день будет использоваться в качестве топлива, применяться будут водород и кислород, из которых она состоит».

Тем временем, новая технология электроснабжения постепенно совершенствовалась, а начиная с 50-х годов XX века уже и года не проходило без анонсов новейших изобретений в этой области. В 1958 году в США появился первый трактор, работающий на топливных элементах, в 1959г. вышел в свет 5кВт-ный источник питания для сварочной машины, и т.д. В 70-х годах водородные технологии взлетели в космос: появились самолёты и ракетные двигатели на водороде. В 60-х годах РКК "Энергия"разрабатывала топливные элементы для советской лунной программы. Программа "Буран" также не обошлась без них: были разработаны щелочные 10кВт-ные топливные элементы. А ближе к концу века топливные элементы пересекли нулевую высоту над уровнем моря - на их основе разработано электроснабжение немецкой подводной лодки. Возвращаясь на Землю, в 2009 году в США запустили в эксплуатацию первый локомотив. Естественно, на топливных элементах.

Во всей прекрасной истории топливных элементов интересно то, что колесо по-прежнему остается неимеющим аналогов в природе изобретением человечества. Дело в том, что по своему устройству и принципу действия топливные элементы аналогичны биологической клетке, которая, по сути, представляет собой миниатюрный водородно-кислородный топливный элемент. В итоге человек в очередной раз изобрел то, чем природа пользуется уже миллионы лет.

Принцип работы топливных элементов

Принцип работы топливных элементов очевиден даже из школьной программы по химии и именно он был заложен в опытах Уильяма Гроува 1839 года. Всё дело в том, что процесс электролиза воды (диссоциации воды) является обратимым. Как верно то, что, при пропускании электрического тока через воду, последняя расщепляется на водород и кислород, так верно и обратное: водород и кислород можно соединить с получением воды и электричества. В опыте Гроува два электрода размещались в камере, в которую подавались под давлением ограниченные порции чистого водорода и кислорода. В силу небольших объемов газа, а также благодаря химическим свойствам угольных электродов в камере происходила медленная реакция с выделением тепла, воды и, самое главное, с образованием разности потенциалов между электродами.

Простейший топливный элемент состоит из специальной мембраны, используемой как электролит, по обе стороны которой нанесены порошкообразные электроды. Водород поступает на одну сторону (анод), а кислород (воздух) - на другую (катод). На каждом электроде происходят разные химические реакции. На аноде водород распадается на смесь протонов и электронов. В некоторых топливных элементах электроды окружены катализатором, обычно выполненным из платины или других благородных металлов, способствующих протеканию реакции диссоциации:

2H 2 → 4H + + 4e -

где H 2 - двухатомная молекула водорода (форма, в которой водород присутствует в виде газа); H + - ионизированный водород (протон); е - - электрон.

С катодной стороны топливного элемента протоны (прошедшие через электролит) и электроны (которые прошли через внешнюю нагрузку) воссоединяются и вступают в реакцию с подаваемым на катод кислородом с образованием воды:

4H + + 4e - + O 2 → 2H 2 O

Суммарная реакция в топливном элементе записывается так:

2H 2 + O 2 → 2H 2 O

Работа топливного элемента основана на том, что электролит пропускает через себя протоны (по направлению к катоду), а электроны - нет. Электроны движутся к катоду по внешнему проводящему контуру. Это движение электронов и есть электрический ток, который может быть использован для приведения в действие внешнего устройства, подсоединенного к топливному элементу (нагрузка, например, лампочка):

В своей работе топливные элементы используют водородное топливо и кислород. Проще всего с кислородом - он забирается из воздуха. Водород может подаваться непосредственно из некой ёмкости или путем выделения его из внешнего источника топлива (природного газа, бензина или метилового спирта - метанола). В случае внешнего источника его необходимо химически преобразовать, чтобы извлечь водород. В настоящее время большинство технологий топливных элементов, разрабатываемых для портативных устройств, задействуют именно метанол.

Характеристики топливных элементов

    Топливные элементы являются аналогами существующих аккумуляторов в том смысле, что в обоих случаях электрическая энергия получается из химической. Но есть и принципиальные отличия:

    • они работают только пока топливо и окислитель поступают от внешнего источника (т.е. они не могут накапливать электрическую энергию),

      химический состав электролита в процессе работы не изменяется (топливный элемент не нуждается в перезарядке),

      они полностью не зависимы от электричества (в то время как обычные аккумуляторы запасают энергию из электросети).

    Каждый топливный элемент создаёт напряжение в 1В . Большее напряжение достигается последовательным их соединением. Увеличение мощности (тока) реализуется через параллельное соединение каскадов из последовательно соединенных топливных элементов.

    У топливных элементов нет жёсткого ограничения на КПД , как у тепловых машин (КПД цикла Карно является максимально возможным КПД среди всех тепловых машин с такими же минимальной и максимальной температурами).

    Высокий КПД достигается благодаря прямому превращению энергии топлива в электроэнергию. Если в дизель-генераторных установках топливо сначала сжигается, полученный пар или газ вращает турбину или вал двигателя внутреннего сгорания, которые в свою очередь вращают электрический генератор. Результатом становится КПД максимум в 42%, чаще же составляет порядка 35-38%. Более того, из-за множества звеньев, а также из-за термодинамических ограничений по максимальному КПД тепловых машин, существующий КПД вряд ли удастся поднять выше. У существующих топливных элементов КПД составляет 60-80% ,

    КПД почти не зависит от коэффициента загрузки ,

    Ёмкость в несколько раз выше , чем в существующих аккумуляторах,

    Полное отсутствие экологически вредных выбросов . Выделяется только чистый водяной пар и тепловая энергия (в отличие от дизельных генераторов, имеющих загрязняющие окружающую среду выхлопы и требующих их отвода).

Виды топливных элементов

Топливные элементы классифицируются по следующим признакам:

    по используемому топливу,

    по рабочему давлению и температуре,

    по характеру применения.

В целом, выделяют следующие типы топливных элементов :

    Твердооксидный топливный элемент (Solid-oxide fuel cells - SOFC);

    Топливный элемент с протонообменной мембраной (Proton-exchange membrane fuel cell - PEMFC);

    Обратимый топливный элемент (Reversible Fuel Cell - RFC);

    Прямой метанольный топливный элемент (Direct-methanol fuel cell - DMFC);

    Расплавной карбонатный топливный элемент (Molten-carbonate fuel cells - MCFC);

    Фосфорнокислый топливный элемент (Phosphoric-acid fuel cells - PAFC);

    Щелочной топливный элемент (Alkaline fuel cells - AFC).

Одним из типов топливных элементов, работающих при нормальных температурах и давлениях с использованием водорода и кислорода, являются элементы с ионообменной мембраной. Образующаяся вода не растворяет твердый электролит, стекает и легко отводится.

Проблемы топливных элементов

    Главная проблема топливных элементов связана с необходимостью наличия "упакованного" водорода, который можно было бы свободно приобрести. Очевидно, проблема должна решиться со временем, но пока ситуация вызывает легкую улыбку: что первично - курица или яйцо? Топливные элементы ещё не настолько развиты, чтобы строить водородные заводы, но их прогресс немыслим без этих заводов. Здесь же отметим проблему источника водорода. На настоящий момент водород получают из природного газа, но повышение стоимости энергоносителей повысит и цену водорода. При этом в водороде из природного газа неизбежно присутствие CO и H 2 S (сероводород), которые отравляют катализатор.

    Распространенные платиновые катализаторы используют очень дорогой и невосполнимый в природе металл - платину. Однако данную проблему планируется решить использованием катализаторов на основе ферментов, являющихся дешевым и легкопроизводимым веществом.

    Проблемой является и выделяющееся тепло. Эффективность резко возрастет, если генерируемое тепло направить в полезное русло - производить тепловую энергию для системы теплоснабжения, использовать в качестве бросового тепла в абсорбционных холодильных машинах и т.п.

Топливные элементы на метаноле (DMFC): реальное применение

Наивысший практический интерес на сегодняшний день представляют топливные элементы прямого действия на основе метанола (Direct Methanol Fuel Cell, DMFC). Ноутбук Portege M100, работающий на топливном элементе DMFC выглядит следующим образом:

Типичная схема DMFC-элемента содержит, помимо анода, катода и мембраны, несколько дополнительных комплектующих: картридж с топливом, датчик метанола, насос для циркуляции топлива, воздушный насос, теплообменник и т.д.

Время работы, например, ноутбука по сравнению с аакумуляторами планируется увеличить в 4 раза (до 20 часов), мобильного телефона - до 100 часов в активном режиме и до полугода в режиме ожидания. Подзарядка будет осуществляться добавлением порции жидкого метанола.

Основной задачей является поиск вариантов использования раствором метанола с наивысшей его концентрацией. Проблема в том, что метанол - достаточно сильный яд, смертельный в дозах от нескольких десятков граммов. Но концентрация метанола напрямую влияет на длительность работы. Если ранее применялся 3-10%-й раствор метанола, то уже появились мобильные телефоны и КПК с использованием 50%-го раствора, а в 2008 году в лабораторных условиях специалистами MTI MicroFuel Cells и, чуть позже, Toshiba получены топливные элементы, работающие на чистом метаноле.

За топливными элементами - будущее!

Наконец, об очевидности большого будущего топливных элементов говорит тот факт, что международная организация IEC (International Electrotechnical Commission), определяющая индустриальные стандарты для электронных устройств, уже объявила о создании рабочей группы для разработки международного стандарта на миниатюрные топливные элементы.

Универсальный источник энергии для всех биохимических процессов в живых организмах, одновременно создавая разность электрических потенциалов на своей внутренней мембране. Однако копирование этого процесса для получения электроэнергии в промышленных масштабах затруднительно, так как протонные помпы митохондрий имеют белковую природу.

Устройство ТЭ

Топливные элементы - это электрохимические устройства, которые теоретически могут иметь высокий коэффициент преобразования химической энергии в электрическую .

Принцип разделения потоков горючего и окислителя

Обычно в низкотемпературных топливных элементах используются: водород со стороны анода и кислород на стороне катода (водородный элемент) или метанол и кислород воздуха. В отличие от топливных элементов, одноразовые гальванические элементы и аккумуляторы содержат расходуемые твёрдые или жидкие реагенты, масса которых ограничена объёмом батарей, и, когда электрохимическая реакция прекращается, они должны быть заменены на новые либо электрически перезаряжены, чтобы запустить обратную химическую реакцию, или по крайней мере в них нужно поменять израсходованные электроды и загрязнённый электролит. В топливном элементе реагенты втекают, продукты реакции вытекают, и реакция может протекать так долго, как поступают в неё реагенты и сохраняется реакционная способность компонентов самого топливного элемента, чаще всего определяемая их «отравлением» побочными продуктами недостаточно чистых исходных веществ.

Пример водородно-кислородного топливного элемента

Водородно-кислородный топливный элемент с протонообменной мембраной (например, «с полимерным электролитом ») содержит протонопроводящую полимерную мембрану, которая разделяет два электрода - анод и катод . Каждый электрод обычно представляет собой угольную пластину (матрицу) с нанесённым катализатором - платиной или сплавом платиноидов и др. композиции.

Топливные элементы не могут хранить электрическую энергию, как гальванические или аккумуляторные батареи, но для некоторых применений, таких как работающие изолированно от электрической системы электростанции, использующие непостоянные источники энергии (солнце, ветер), они совместно с электролизёрами , компрессорами и ёмкостями для хранения топлива (например, баллоны для водорода) образуют устройство для хранения энергии.

Мембрана

Мембрана обеспечивает проводимость протонов , но не электронов . Она может быть полимерной (Нафион (Nafion), полибензимидазол и др.) или керамической (оксидной и др.). Впрочем, существуют ТЭ и без мембраны .

Анодные и катодные материалы и катализаторы

Анод и катод, как правило, - это просто проводящий катализатор - платина, нанесенная на высокоразвитую углеродную поверхность.

Типы топливных элементов

Основные типы топливных элементов
Тип топливного элемента Реакция на аноде Электролит Реакция на катоде Температура, °С
Щелочной ТЭ 2 H 2 + 4 OH − → 2 H 2 O + 4 e − Раствор КОН O  2 + 2 H 2 O + 4 e − → 4 OH − 200
ТЭ с протонно-обменной мембраной 2 H 2 → 4 H + + 4 e − Протоннообменная мембрана 80
Метанольный ТЭ 2 CH 3 OH + 2 H 2 O → 2 CO 2 + 12 H + + 12 e − Протоннообменная мембрана 3 O 2 + 12 H + + 12 e − → 6 H 2 O 60
ТЭ на основе ортофосфорной кислоты 2 H 2 → 4 H + + 4 e − Раствор фосфорной кислоты O 2 + 4 H + + 4 e − → 2 H 2 O 200
ТЭ на основе расплавленного карбоната 2 H 2 + 2 CO 3 2− → 2 H 2 O + 2 CO 2 + 4 e − Расплавленный карбонат O 2 + 2 CO 2 + 4 e − → 2 CO 3 2− 650
Твердотельный оксидный ТЭ 2 H 2 + 2 O 2 − → 2 H 2 O + 4 e − Смесь оксидов O 2 + 4 e − → 2 O 2 − 1000

Воздушно-алюминиевый электрохимический генератор

Воздушно-алюминиевый электрохимический генератор использует для производства электроэнергии окисление алюминия кислородом воздуха . Токогенерирующую реакцию в нем можно представить в виде

4 Al + 3 O 2 + 6 H 2 O ⟶ 4 Al (OH) 3 , {\displaystyle {\ce {4 Al + 3 O_2 + 6 H_2O -> 4 Al(OH)_3,}}} E = 2 , 71 V , {\displaystyle \quad E=2,71~{\text{V}},}

а реакцию коррозии - как

2 Al + 6 H 2 O ⟶ 2 Al (OH) 3 + 3 H 2 ⋅ {\displaystyle {\ce {2 Al + 6 H_2O -> 2 Al(OH)_3 + 3 H_2.}}}

Серьёзными преимуществами воздушно-алюминиевого электрохимического генератора являются: высокий (до 50 %) коэффициент полезного действия , отсутствие вредных выбросов, простота обслуживания .

Преимущества и недостатки

Преимущества водородных топливных элементов

Компактные размеры

Топливные элементы легче и имеют меньшие размеры, чем традиционные источники питания. Топливные элементы производят меньше шума, меньше нагреваются, более эффективны с точки зрения потребления топлива . Это становится особенно актуальным в военных приложениях. Например, солдат армии США носит 22 различных типа аккумуляторных батарей. [ ] Средняя мощность батареи 20 ватт. Применение топливных элементов позволит сократить затраты на логистику, снизить вес, продлить время действия приборов и оборудования.

Проблемы топливных элементов

Внедрению топливных элементов на транспорте мешает отсутствие водородной инфраструктуры. Возникает проблема «курицы и яйца» - зачем производить водородные автомобили, если нет инфраструктуры? Зачем строить водородную инфраструктуру, если нет водородного транспорта?

Большинство элементов при работе выделяют то или иное количество тепла. Это требует создания сложных технических устройств для утилизации тепла (паровые турбины и пр.), а также организации потоков топлива и окислителя, систем управления отбираемой мощностью , долговечности мембран, отравления катализаторов некоторыми побочными продуктами окисления топлива и других задач. Но при этом же высокая температура процесса позволяет производить тепловую энергию, что существенно увеличивает КПД энергетической установки.

Проблема отравления катализатора и долговечности мембраны решается созданием элемента с механизмами самовосстановления - регенерация ферментов-катализаторов [ ] .

Топливные элементы, в силу низкой скорости химических реакций, обладают значительной [ ] инертностью и для работы в условиях пиковых или импульсных нагрузок требуют определённого запаса мощности или применения других технических решений (суперконденсаторы , аккумуляторные батареи).

Также существует проблема получения и хранения водорода . Во-первых, он должен быть достаточно чистый, чтобы не произошло быстрого отравления катализатора , во-вторых, достаточно дешёвый, чтобы его стоимость была рентабельна для конечного потребителя.

Из простых химических элементов водород и углерод являются крайностями. У водорода самая большая удельная теплота сгорания, но очень низкая плотность и высокая химическая активность. У углерода самая высокая удельная теплота сгорания среди твёрдых элементов, достаточно высокая плотность, но низкая химическая активность из-за энергии активации. Золотая середина - углевод (сахар) или его производные (этанол) или углеводороды (жидкие и твёрдые). Выделяемый углекислый газ должен участвовать в общем цикле дыхания планеты, не превышая предельно допустимых концентраций.

Существует множество способов производства водорода , но в настоящее время около 50% водорода , производимого во всём мире, получают из природного газа . Все остальные способы пока очень дорогостоящие. Очевидно, что при неизменном балансе первичных энергоносителей, с ростом потребностей в водороде как в массовом топливе и развитию устойчивости потребителей к загрязнениям, рост производства будет расти именно за счёт этой доли, а с наработкой инфраструктуры, позволяющей иметь его в доступности, более дорогие (но более удобные в некоторых ситуациях) способы будут отмирать. Прочие способы, в которые водород вовлечён в качестве вторичного энергоносителя, неизбежно нивелируют его роль от топлива до своего рода химического аккумулятора. Существует мнение, что с ростом цен на энергоносители стоимость водорода также растёт из-за этого неизбежно. Но себестоимость энергии, производимой из возобновляемых источников, постоянно снижается (см. Ветроэнергетика , Производство водорода). Например, средняя цена электроэнергии в США выросла в г. до $0,09 за кВт·ч , тогда как себестоимость электроэнергии, произведённой из ветра, составляет $0,04-$0,07 (см. Ветроэнергетика или AWEA). В Японии киловатт-час электроэнергии стоит около $0,2, что сопоставимо со стоимостью электроэнергии, произведённой фотоэлектрическими элементами . Учитывая территориальную удалённость некоторых перспективных областей (например, транспортировать полученную фотоэлектрическими станциями электроэнергию из Африки напрямую, по проводам, явно бесперспективно, несмотря на её огромный энергетический потенциал в этом плане), даже работа водорода как «химического аккумулятора» может быть вполне рентабельной. По данным на 2010 г. стоимость энергии водородного топливного элемента должна подешеветь в восемь раз, чтобы стать конкурентноспособной с энергией, производимой тепловыми и атомными электростанциями .

К сожалению, в водороде, произведённом из природного газа , будет присутствовать СО и сероводород , отравляющие катализатор . Поэтому для уменьшения отравления катализатора необходимо повысить температуру топливного элемента. Уже при температуре 160 °C в топливе может присутствовать 1% СО.

К недостаткам топливных элементов с платиновыми катализаторами можно отнести высокую стоимость платины, сложности с очисткой водорода от вышеупомянутых примесей, и как следствие, дороговизну газа, ограниченный ресурс элемента вследствие отравления катализатора примесями. Кроме того, платина для катализатора - невозобновляемый ресурс. Считается, что её запасов хватит на 15-20 лет производства элементов .

В качестве альтернативы платиновым катализаторам исследуется возможность применения ферментов. Ферменты являются возобновляемым материалом, они дёшевы, не отравляются основными примесями в дешёвом топливе. Обладают специфическими преимуществами . Нечувствительность ферментов к СО и сероводороду сделала возможным получение водорода из биологических источников, например, при конверсии органических отходов.

История

Первые открытия

Принцип действия топливных элементов был открыт в 1839 г. английским ученым У. Гроувом , который обнаружил, что процесс электролиза обратим, то есть водород и кислород можно объединить в молекулы воды без горения, но с выделением тепла и электричества . Свой прибор, где удалось провести эту реакцию, ученый назвал "газовой батареей", и это был первый топливный элемент. Однако в последующие 100 лет эта идея не нашла практического применения.

В 1937 г. профессор Ф.Бэкон начал работы над своим топливным элементом. К концу 1950-х он разработал батарею из 40 топливных элементов, имеющую мощность 5 кВт. Такую батарею можно было применить для обеспечения энергией сварочного аппарата или грузоподъемника . Батарея работала при высоких температурах порядка 200°С и более и давлениях 20-40 бар. Кроме того, она была весьма массивна.

История исследований в СССР и России

Первые исследования начались в -х годах. РКК «Энергия» (с 1966 года) разрабатывала PAFC элементы для советской лунной программы . С 1987 года по «Энергия» произвела около 100 топливных элементов, которые наработали суммарно около 80000 часов.

Во время работ над программой «Буран », исследовались щелочные AFC элементы. На «Буране » были установлены 10 кВт топливные элементы.

В 1989 году «Институт высокотемпературной электрохимии» (Екатеринбург) произвёл первую SOFC установку мощностью 1 кВт.

В 1999 году АвтоВАЗ начал работы с топливными элементами. К 2003 году на базе автомобиля ВАЗ-2131 было создано несколько опытных экземпляров. В моторном отсеке автомобиля располагались батареи топливных элементов, а баки со сжатым водородом в багажном отделении, то есть была применена классическая схема расположения силового агрегата и топливных баков-баллонов. Разработками водородного автомобиля руководил кандидат технических наук Мирзоев Г. К.

10 ноября 2003 года было подписано Генеральное соглашение о сотрудничестве между Российской академией наук и компанией «Норильский никель» в области водородной энергетики и топливных элементов. Это привело к учреждению 4 мая 2005 года Национальной инновационной компании «Новые энергетические проекты» (НИК НЭП), которая в 2006 году произвела резервную энергетическую установку на основе ТЭ с твёрдым полимерным электролитом мощностью 1 кВт. По сообщению Информационного агентства «МФД-ИнфоЦентр», ГМК «Норильский никель» ликвидирует компанию «Новые энергетические проекты» в рамках объявленного в начале 2009 года решения избавляться от непрофильных и убыточных активов.

В 2008 году была основана компания «ИнЭнерджи», которая занимается научно-исследовательскими и опытно-конструкторскими работами в области электрохимических технологий и систем электропитания. По результатам проведенных исследований, при кооперации с ведущими институтами РАН (ИПХФ, ИФТТ и ИХТТ), был реализован ряд пилотных проектов, показавших высокую эффективность. Для компании «МТС» была создана и введена в эксплуатацию модульная система резервного питания на базе водородно-воздушных топливных элементов, состоящая из ТЭ, системы управления, накопителя электроэнергии и преобразователя. Мощность системы до 10кВт.

Водородно-воздушные энергетические системы обладают рядом неоспоримых преимуществ, среди которых широкий температурный диапазон эксплуатации внешней среды (-40..+60С), высокий КПД (до 60%), отсутствие шума и вибраций, быстрый старт, компактность и экологичность (вода, как результат “выхлопа”).

Совокупная стоимость владения водородно-воздушных систем значительно ниже обычных электрохимических батарей. Кроме того, они обладают высочайшей отказоустойчивостью за счет отсутствия движущихся частей механизмов, не нуждаются в техническом обслуживании, а срок их эксплуатации достигает 15 лет, превосходя классические электрохимические батареи вплоть до пяти раз.

Над созданием образцов электростанций на топливных элементах работают Газпром и федеральные ядерные центры РФ. Твердооксидные топливные элементы , разработка которых сейчас активно ведётся, появятся, видимо, после 2016-го года.

Применение топливных элементов

Топливные элементы первоначально применялись только в космической отрасли, однако в настоящее время сфера их применения непрерывно расширяется. Их применяют в стационарных электростанциях, в качестве автономных источников тепло- и электроснабжения зданий, в двигателях транспортных средств, в качестве источников питания ноутбуков и мобильных телефонов. Часть этих устройств пока не покинула стен лабораторий, другие уже коммерчески доступны и давно применяются.

Примеры применения топливных элементов
Область применения Мощность Примеры использования
Стационарные установки 5-250 кВт и выше Автономные источники тепло- и электроснабжения жилых, общественных и промышленных зданий, источники бесперебойного питания, резервные и аварийные источники электроснабжения
Портативные установки 1-50 кВт Дорожные указатели, грузовые и железнодорожные рефрижераторы, инвалидные коляски, тележки для гольфа, космические корабли и спутники
Транспорт 25-150 кВт Автомобили и другие транспортные средства, военные корабли и подводные лодки
Портативные устройства 1-500 Вт Мобильные телефоны, ноутбуки, карманные компьютеры, различные бытовые электронные устройства, современные военные приборы

Широко используются высокомощные энергетические установки на базе топливных элементов. В основном такие установки работают на основе элементов на базе расплавленных карбонатов, фосфорной кислоты и твёрдых оксидов. Как правило, такие установки используют не только для выработки электроэнергии, но и для получения тепла.

Большие усилия прилагаются для разработки гибридных установок, в которых высокотемпературные топливные элементы комбинируются с газовыми турбинами. КПД таких установок может достигать 74,6 % при усовершенствовании газовых турбин.

Активно выпускаются и маломощные установки на базе топливных элементов.

Техническое регулирование в области производства и использования топливных элементов

В 19 августа 2004 г. Международной электротехнической комиссией (International Electrotechnical Commission, IEC) был выпущен первый международный стандарт IEC 62282–2 «Технологии топливных элементов. Часть 2, Модули топливных элементов». Это был первый стандарт серии IEC 62282, разработка которой осуществляется Техническим комитетом «Технологии топливных элементов» (TC/IEC 105). В состав Технического комитета ТС/IEC 105 входят постоянные представители из 17 стран и наблюдатели из 15 стран мира.

TC/IEC 105 разработал и издал 14 международных стандартов серии IEC 62282, охватывающих широкий спектр тематики, связанной со стандартизацией энергоустановок на основе топливных элементов. Федеральное агентство по техническому регулированию и метрологии Российской Федерации (РОССТАНДАРТ) является коллективным членом Технического комитета ТС/IEC 105 на правах наблюдателя. Координационную деятельность с МЭК со стороны Российской Федерации осуществляет секретариат РосМЭК (Росстандарт), а работы по имплементации стандартов МЭК производятся национальным Техническим комитетом по стандартизации ТК 029 «Водородные технологии», Национальной ассоциацией водородной энергетики (НАВЭ) и ООО «КВТ». В настоящее время РОССТАНДАРТ принял следующие национальные и межгосударственные стандарты, идентичные международным стандартам IEC.

Топливный элемент (Fuel Cell) — преобразователь химической потенциальной энергии (энергии молекулярных связей) в энергию электричества. Устройство содержит рабочую ячейку, где топливом выступает газообразный водород (H 2) и кислород (O 2). Продуктами реакции, происходящей внутри ячейки, являются вода, электричество и тепло. Технологически топливные элементы следует рассматривать более совершенными системами по сравнению с двигателями внутреннего сгорания, электростанциями сжигания угля и даже атомными электростанциями, работа которых сопровождается выбросом вредных побочных продуктов.

Поскольку кислород в большом количестве присутствует в атмосфере, остаётся только добавить к топливному элементу водород. Это вещество достаточно легко получить процессом электролиза в одноимённом аппарате, именуемом — электролизёр.

Что такое электролизёр и как работает?

Электрохимическое устройство, где для разделения молекул на составляющие атомы используется электрический ток. Электролизёры широко используются под разделение воды на водород и кислород.

Методика электролиза является наиболее перспективным способом производства водорода очень высокой чистоты (99,999%) благодаря высокой эффективности и быстрому динамическому отклику по сравнению с некоторыми другими методами.

Водород, полученный электролизом, качественно чист и потому удачно подходит для применения в топливном элементе.

Какие разработаны конструкции электролизёров?

Подобно топливным элементам, электролизёры построены на основе двух электродов и размещённого между электродами ионопроводящего электролита. Такие аппараты различаются по типу используемого электролита.

Структурная схема электролизёра и внешний вид одного из промышленных вариантов: 1 – слой катализатора; 2 – диффузионный слой газа; 3 – биполярная пластина; 4 – протонообменная мембрана; 5 — уплотнение

Разработаны несколько различных типов электролизёров, уже используемых на практике либо находящихся на стадии внедрения. Двумя наиболее распространёнными типами электролизёров, производящих водород, являются:

  1. Щелочной электролизёр.
  2. Мембранный электролизёр.

Щелочной электролизёр

Этот вид устройства работает на жидком каустическом электролите (обычно 30% KOH). Щелочные электролизёры строятся на недорогих металлах (), выступающих в качестве катализатора и обладают достаточно надежной структурой.

Щелочные электролизеры производят водород чистотой 99,8%, функционируют при относительно низкой температуре и показывают высокий уровень производительности. Рабочее давление в установках может достигать 30 АТИ. При работе поддерживается низкая плотность тока.

Протонообменный мембранный (ПОМ) электролизер

Катализатор содержит пористую структуру, поэтому площадь поверхности платины максимально подвергается воздействию водорода или кислорода. Сторона катализатора, покрытая платиной, обращена к ПОМ.

Как работает ячейка топливного элемента?

Своеобразным «сердцем» ячейки топливного элемента является протонообменая мембрана (ПОМ). Этот компонент позволяет протонам проходить практически беспрепятственно, но электроны блокирует.

Таким образом, когда водород попадает в катализатор и расщепляется на протоны и электроны, протоны направляются прямиком к стороне катода, а электроны следуют через внешнюю электрическую цепь.

Соответственно, по пути электроны выполняют полезную работу:

  • зажигают электрическую лампу,
  • вращают вал электродвигателя,
  • заряжают аккумуляторную батарею и т.д.

Только проследовав такой путь, электроны объединяются с протонами и кислородом на другой стороне ячейки с последующим производством воды.


Полноценная система из нескольких топливных ячеек: 1 – газовый ресивер; 2 – радиатор охлаждения с вентилятором; 3 – компрессор; 4 – опорный фундамент; 5 – топливный элемент в сборе из нескольких ячеек; 6 – модуль промежуточного хранилища

Все эти реакции происходят в так называемом стеке одной ячейке. На практике обычно используется целая системы вокруг основного компонента, которая представляет собой стек из нескольких ячеек.

Стек встраивается в модуль, состоящий из частей:

  • управление топливом, водой и воздухом,
  • холодильное оборудование,
  • программное обеспечение для управления хладагентом.

Этот модуль затем интегрируется в полную систему, которую допустимо использовать для разных применений.

По причине высокого энергетического содержания водорода и высокой эффективности топливных элементов (55%), технологию допустимо использовать в разных областях.

Например, в качестве резервного питания для производства электроэнергии, когда нарушается работа основной электрической сети.

Очевидные преимущества технологии

Преобразуя химическую потенциальную энергию непосредственно в электрическую энергию, топливные элементы исключают образование «тепловых узких мест» (2-й закон термодинамики).

Следовательно, по своей природе эта технология видится более эффективной по сравнению с привычными двигателями внутреннего сгорания.

Так, схема ДВС изначально преобразует химическую потенциальную энергию в тепло, и только затем получается механическая работа.

Прямые выбросы топливных элементов — это простая вода и некоторое количество тепла. Здесь отмечается существенное улучшение по сравнению с теми же двигателями внутреннего сгорания, выделяющими, кроме всего прочего, ещё и парниковые газы.

Топливные элементы характерны отсутствием движущихся частей. Подобные конструкции всегда отличались повышенной надёжностью по отношению к традиционным двигателям.

Водород производится экологически безопасным способом, в то время как добыча и переработка нефтепродуктов являются очень опасными с точки зрения технологического производства.